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Abstract

The protein–protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes.
Therefore, the study of human–virus PPIs can help us understand the principles of human–virus relationships and can thus
guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have
witnessed the rapid accumulation of experimentally identified human–virus PPI data, which provides an unprecedented
opportunity for bioinformatics studies revolving around human–virus PPIs. In this article, we provide a comprehensive
overview of computational studies on human–virus PPIs, especially focusing on the method development for human–virus
PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human–virus
PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we
elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning
algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language
processing). To further advance the understanding in this research topic, we also outline the practical applications of the
human–virus interactome in fundamental biological discovery and new antiviral therapy development.
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Introduction

Viruses are extremely tiny microorganisms that contain a core
of genetic material, either RNA or DNA, wrapped in protein cap-
sids [1]. They can only reproduce themselves by attaching and
entering host cells and then hijacking the host cells’ metabolic
machinery [2]. Viral infections cause many human diseases and
can even become serious threats to global health. In modern
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times, viruses have triggered three major pandemics: the 1918–
1919 ‘Spanish flu’ epidemic [3], which killed 20–40 million peo-
ple, the acquired immune deficiency syndrome (AIDS) epidemic
[4], which killed an estimated 1.5 million people worldwide in
2013, and the ongoing high-transmissible Coronavirus Disease-
2019 (COVID-19) epidemic [5] with more than 82 million cases
including 1 818 849 deaths by 1 February 2021 (https://covid19.
who.int/).
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Figure 1. Numbers of experimentally identified human–virus PPIs and publications associated with human–virus PPIs in the past 20 years. (A) The human–virus

PPIs were downloaded and integrated from four databases (HPIDB, PHISTO, VirHostNet and VirusMentha; version 2020-03) for statistical analysis. (B) The number of

publications was counted by searching the keywords associated with human–virus PPIs in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/, version 2020-08).

(C) The numbers of known human–virus PPIs of the top five virus families in 2020 and one or several species with the largest number of PPIs in each virus family are

shown.

The protein–protein interactions (PPIs) between human
and viruses are a crucial entry point for deciphering compli-
cated human–virus relationships. Recent advances in high-
throughput technologies have fueled large-scale mapping of
human–virus PPIs (Figure 1), but the current data remain far from
sufficient for establishing a complete human–virus PPI network
(also termed the human–virus interactome). Computational
biologists are also working hard to develop predictive models
to dramatically accelerate the completeness and soundness of
the human–virus PPI network, which contributes to an improved
understanding of viral infection mechanisms, receptor discov-
ery, host cell tropism investigation and drug target discovery.
Cost-effective prediction methods are also increasingly useful
for fighting against sudden outbreaks of new viruses, such as
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). The potential PPIs between human and new viruses can be
quickly predicted to aid the initiation of drug design and vaccine
development without any delay [6, 7].

In this review, the current research status of the human–virus
interactome is summarized based on experimental methods,
public databases, computational prediction approaches and bio-
logical applications (Figure 2A). In particular, human–virus PPI
prediction methods based on machine learning (ML) are empha-
sized and elaborated. Moreover, future trends and perspectives
in this research area are outlined to provide more hints for
researchers in the future.

Experimental methods for detecting
human–virus PPIs
In general, experimental approaches for the determination of
PPIs are mainly based on biochemical assays, genetic assays and
structural biology approaches [8], which can be simply divided
into two categories according to the experimental scale, i.e.
low- and high-throughput detection methods [8–10]. Different
experimental methods have their own advantages and limi-
tations. Low-throughput experiments (e.g. isothermal titration

calorimetry [11], pulldown assays [12] and surface plasmon res-
onance [13]) can detect few but high-quality PPIs, whereas high-
throughput methods identify PPIs in large quantities but with
a higher false positive rate. Among the high-throughput assays,
the classical yeast two-hybrid (Y2H) system [14, 15] has become
the most widely used method for detecting PPIs. Another pop-
ular high-throughput technique is affinity purification coupled
with mass spectrometry (AP-MS) [16, 17]. In parallel with the
development of high-throughput detection techniques, large-
scale human–virus PPI studies using Y2H or AP-MS approaches
have been performed for Epstein-Barr virus (EBV) [18], hepatitis
C virus (HCV) [19–22], influenza A (H1N1) virus [23], dengue virus
(DENV) [24, 25], herpes simplex virus type-1 (HSV-1) [26, 27],
human papillomavirus (HPV) [28–30], human immunodeficiency
virus type 1 (HIV-1) [31], Ebola virus [32], Zika virus (ZIKV) [25]
and SARS-CoV-2 [33,34] (Table 1).

In view of the inevitability of false positives and false nega-
tives in experimental detection, certain data filtering methods
should be adopted to obtain relatively high-quality data and
thus ensure that subsequent applications will be more meaning-
ful. Although several scoring methods have been developed to
assess the reliability of experimental PPIs [35–38], these methods
were mainly proposed for intraspecies PPIs, and their usability in
the quality assessment of human–virus PPIs remains unclear.

Current public databases of human–virus PPIs
With the accumulation of experimentally determined human–
virus PPI data, several public database resources have been
established to store and manage human–virus PPI data for
the community. According to the coverage of virus species,
the databases can be divided into two categories (Table 2). The
first category consists of species-specific databases covering PPI
data from only one specific viral species and includes HCVpro
[39], NCBI HIV-1 Human Interaction Database [40], DenHunt
[41], DenvInt [42] and ZikaBase [43]. The other includes pan-
species databases based on a wider range of viral species, such
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Computational studies on human–virus PPIs 3

Figure 2. Overview of research on human–virus PPIs. (A) The left panel describes the generation and management of human–virus PPI data, including experimental

identifications, database resources and computational predictions, and the right panel shows the applications of human–virus PPI data related to obtaining a

mechanistic understanding of human–virus relationships and the development of new therapeutic strategies. (B) Viral proteins tend to target hub or bottleneck proteins

in the human PPI network. (C) Simplified schema representing examples of viral mimicry of human motifs. The LMP1 protein of EBV mimics the motif (‘PxQxT’) of

CD40 to interact with TRAF3; CD40 is the endogenous interacting partner of TRAF3.

Table 1. Large-scale experimental detection of human–virus PPIs

Virus Viral type Technique Reference

EBV DNA virus Y2H Calderwood et al., 2007 [18]
HCV RNA virus Y2H, AP-MS de Chassey et al., 2008 [19]; Dolan et al., 2013 [20];

Germain et al., 2014 [21]; Ramage et al., 2015 [22]
H1N1 RNA virus Y2H Shapira et al., 2009 [23]
DENV RNA virus Y2H, AP-MS Khadka et al., 2011 [24]; Shah et al., 2018 [25]
HSV-1 DNA virus Y2H, AP-MS Pichlmair et al., 2012 [26]; Griffiths et al., 2013 [27]
HPV DNA virus Y2H, AP-MS Rozenblatt-Rosen et al., 2012 [28]; White et al., 2012

[29]; Eckhardt et al., 2018 [30]
HIV-1 RNA virus AP-MS Jager et al., 2012 [31]
EBOV RNA virus AP-MS Batra et al., 2018 [32]
ZIKV RNA virus AP-MS Shah et al., 2018 [25]
SARS-CoV-2 RNA virus AP-MS Gordon et al., 2020 [33]; Li et al., 2020 [34]

as VirHostNet [44], VirusMentha [45], HPIDB [46], PHISTO [47] and
Viruses.STRING [48]. In general, the human–virus PPIs deposited
in these public databases were mainly integrated from other

comprehensive PPI databases using automatic integration tools
(e.g. PSICQUIC [49]) or manually collected from the published
literature.
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Table 2. Overview of host-pathogen PPI databases containing human–virus PPIs

Database URL Pathogen Host

HCVpro https://www.cbrc.kaust.edu.sa/hcvpro/ HCV Human
NCBI HIV-1 http://www.ncbi.nlm.nih.gov/genome/viruses/retro

viruses/hiv-1/interactions
HIV-1 Human

DenHunt http://proline.biochem.iisc.ernet.in/DenHunt/ DENV Human
DenvInt https://denvint.000webhostapp.com/index.html DENV Human, mosquito
HVIDB http://zzdlab.com/hvidb/ Viruses Human
VirHostNet http://virhostnet.prabi.fr Viruses Human, animal, plant
Viruses.STRING http://viruses.string-db.org/ Viruses All hosts (including

human)
VirusMentha http://virusmentha.uniroma2.it/ Viruses All hosts (including

human)
HPIDB https://hpidb.igbb.msstate.edu/index.html Viruses, bacteria, fungi Human, animal, plant
PHISTO http://www.phisto.org Viruses, bacteria, fungi, protozoa Human

Regarding the species-specific databases, HCVpro [39] is
an HCV-specific knowledge base devoted to housing HCV
intraspecies PPIs and human–HCV interspecies PPIs.
Additionally, this database provides abundant annotation
information on PPIs from a variety of cross-referenced data
resources. The NCBI HIV-1 Human Interaction Database [40]
deposits all known interaction information between HIV-1
and the human host, including human–HIV-1 PPIs, human
genes that have been reported to affect viral replication and
infectivity, and proteins from disease organisms associated with
HIV/AIDS. DenHunt [41] is a database designed for human–DENV
PPIs, which not only contains PPIs but also includes human
genes that are differentially expressed under DENV infections.
DenvInt [42] focuses on storing PPIs between DENV and its hosts
(human and mosquitoes), and this database also stores DENV
intraspecies PPIs. ZikaBase [43] curates the human–ZIKV PPIs
from the published literature and stores some attributes, such
as differentially expressed genes, pathway information, and
available 3D structures of ZIKV proteins.

Among the pan-species databases, VirHostNet [44] is one
of the earliest databases containing human–virus PPIs. This
database focuses on host–virus, virus–virus and host–host PPI
networks, and provides visualization of these PPI networks.
VirusMentha [45], which is an extension of VirusMINT [50],
stores virus–virus and host–virus PPI data. As a comprehensive
host–virus PPI resource, VirusMentha is regularly updated each
week. HPIDB [46] is a resource for host-pathogen interactions,
including human–virus PPIs. In addition to providing more
annotation information for each PPI, this database provides
an online BLAST tool for searching homologous human–virus
PPIs. It is worth noting that only HPIDB provides PPI data in
standardized PSI-MI format [51] among the aforementioned
databases. PHISTO [47] is also a comprehensive platform with
information about host-pathogen interactions and contains a
wealth of analysis tools, such as visualizing the PPI networks
and analyzing the network properties of virally targeted human
proteins. Viruses.STRING [48] is a derivative version of the
popular intraspecies PPI database STRING [52] that only focuses
on the intravirus and host-virus PPIs. In this database, multiple
lines of evidence (including experiments and predictions) to
infer a host–virus PPI are combined to obtain a confidence score
that ultimately represents the possibility of the PPI.

Although the human–virus PPI data in these databases are
increasingly available, the majority of the experimental PPIs are
only from a few virus species (Figure 1C). Indeed, the current
human–virus databases still have room for improvement. First,

the databases should not be designed only for specific virus
species/strains; otherwise, they will not be able to meet the
needs of a wider user group. Second, these databases lack com-
prehensive multidimensional data to facilitate further analysis.
Third, they do not provide online predictors of human–virus PPIs.
For these reasons, we have recently developed a new human–
virus PPI database called HVIDB (http://zzdlab.com/hvidb) [53]
with the purpose of providing more comprehensive annotations
associated with known human–virus PPIs.

Computational methods of predicting
human–virus PPIs
Despite the increasing number of experimentally identified
human–virus PPI data, the current human–virus interactome
remains incomplete. In this context, computational prediction
methods are becoming increasingly important to supplement
experimental efforts. The existing prediction methods include
interolog mapping [54, 55], domain–domain interaction (DDI)-
based inference [56], domain–motif interaction (DMI)-based
inference [57], structure-based method [58] and ML-based
method [59] (Figure 3A). Briefly, the main idea of interolog
mapping is to infer unknown PPIs from known homologous
PPIs (termed interologs); the DDI-based method relies on the
detection of the interacting domain pairs in the query protein
pair to infer the potential interaction [60,61]. Here, we only focus
on describing the DMI-, structure- and ML-based methods for
predicting human–virus PPIs.

DMI-based method

Compared with domains, motifs, which are short functional
sequence segments, also play a role in regulating PPIs. Indeed,
many PPIs are mediated by DMIs, where a domain in one protein
binds to a short linear motif in the other protein [62]. Increasing
lines of evidence shows that viral proteins commonly bind to
domains in human proteins via motifs [63], which mimic the
motifs in the endogenous interacting partners of virally binding
human proteins [64–66] (Figure 2C). Motif mimicry is a tactic
used by viruses to rapidly utilize human proteins to achieve self-
replication or reduce the triggering of host immune responses
[67, 68]. Therefore, the DMI-based method has been more widely
applied for human–virus PPI predictions than the DDI-based
method. The basic principle of this method is to first identify
the domains of the query human protein and the motifs of
the query viral protein, and then determine the interaction
probability based on the occurrence of known DMIs between
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Figure 3. Graphical illustrations of human–virus PPI prediction methods and protein embedding techniques. (A) Schematic diagram of human–virus PPI prediction

methods, including interolog mapping, DDI-based method, DMI-based method, structure-based method and ML-based method. The blue circle represents a human

protein, and the grass green triangle represents a viral protein. (B) Three protein embedding algorithms. The CBOW architecture is used as an example to illustrate the

use of word2vec, doc2vec and node2vec for inferring word vectors. For sequence embedding, the protein sequence is first broken into small k-mers (here k = 3). The

word2vec model learns to predict the vectors for center 3-mers from their context 3-mers, whereas the doc2vec model learns to predict the vectors for center 3-mers

not only from their context 3-mers but also from the whole protein sequence. In terms of node2vec, the node paths generated by random walks in the human PPI

network compose sequences that will be further inputted into the word2vec model.

the protein pair. The ELM [69] and 3did databases [70] are two
public resources that store known DMIs. The motifs in viral
proteins are usually searched programmatically based on the
motif patterns appearing in these known DMIs. The domains
of human proteins are assigned by searching against domain
databases (e.g. PROSITE [71] or Pfam [72]). The published studies
using the DMI-based method are detailed in Table 3.

It is worth noting that some filtering approaches are neces-
sary based on the consideration that only a few motifs present in
the proteins are actually involved in the interactions. Evans et al.
[57] first detected conserved motifs that are conserved at a rate
of at least 70% in different HIV-1 subtypes and then predicted
which human proteins can be targeted by viral proteins based
on the domains that bind to these motifs. This conservative
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Table 3. Summary of existing studies using the DMI-based method

Authors Year Identification of domains in
human proteins

Source of DMI Application

Evans et al. [57] 2009 The PROSITE scan tool with
default parameters was used to
annotate the PROSITE domains.

ELM database Human–HIV-1

Becerra et al. [75] 2017 The Pfam database was
downloaded to annotate the Pfam
domains.

ELM database Human–HIV-1

Chiang et al. [73] 2017 Not described. ELM database Human–HCV
García-Pérez et al. [74] 2018 The Pfam database was

downloaded to annotate the Pfam
domains.

3did database Human–influenza A virus

Lian et al. [76] 2020 The hmmscan tool was used to
annotate the Pfam domains.

3did database Human–HSV-1

motif assignment strategy has also been used in other studies
[73,74]. Becerra et al. [75] developed three filtering methods to
obtain linear motif sets that are (i) conserved in viral proteins
(C), (ii) located in disordered regions (D) and (iii) rare or scarce
in a set of randomized viral sequences (R). The performance
based on the union and intersection sets of these three sets (C,
D and R) was further examined. In our previous work [76], the
highly frequently occurring motifs were also filtered. One should
bear in mind that the DMI-based method can only capture
human–virus PPI types mediated by DMI; thus, the coverage of
the predicted PPIs is somehow limited. Moreover, if the motifs
are not effectively filtered, false positives are also easily gen-
erated. Currently, various motif identification algorithms have
been developed [77], and these makes reliable sequence motif
detection more convenient for researchers.

Structure-based method

The 3D structural information of proteins provides an intuitive
understanding of protein functions, which has been applied
in two main types of structure-based PPI prediction methods.
The first type of method called protein docking predicts the
interaction details between two interacting proteins whose 3D
structures are available and selects the most likely binding mode
as the predicted protein complex structure based on the binding
energy score [78]. Although the biological applications of protein
docking are important, this method is beyond the scope of the
current review. The aim of the second type is to employ the struc-
tural properties for PPI prediction, and the results are expected
to provide additional information in comparison to conventional
protein sequence-based predictions.

A commonly used prediction strategy is the so-called
‘interaction redundancy’. The main idea is that two structurally
similar proteins tend to share the same interaction partners.
Doolittle et al. [79] employed this approach to predict human–
HIV-1 PPIs between nine HIV-1 proteins and human proteins
with known PPIs in the human PPI network. The PPI templates
used in that paper are known human PPIs with structural
complexes. First, these researchers identified human proteins
sharing regions of high structural similarity to an HIV-1
protein as ‘HIV-like’ proteins. If these ‘HIV-like’ human proteins
interact with other human proteins (‘targets’), the corresponding
HIV-1 protein was predicted to interact with the ‘targets’.
Based on the same idea, the researchers then predicted PPIs
between human and DENV [80]. de Chassey et al. [81] further
implemented this idea using not only known human PPIs

but also human–virus PPIs as templates to determine novel
human–virus PPIs. In addition to this ‘interaction redundancy’
evidence, the P-HIPSTer model developed by Lasso et al. [82]
also integrated the predicted human–virus PPIs mediated
by structural DDIs or DMIs. Notably, all the above methods
require the available structural information of human and virus
protein pairs. Although the 3D structures of many proteins
can be determined by homology modeling, accurate structural
prediction of all proteins remains an unsolved issue, which
limits the applications of structure-informed human–virus PPI
prediction methods.

ML-based method

Although some rules and patterns governing interactions
between human and viruses have been captured from known
human–virus PPIs, numerous hidden features cannot be
discovered through simple statistical analysis. ML-based
prediction methods have advantages in addressing this issue
and have also been flourishing in human–virus PPI prediction
over the past decade (Table 4). As an important branch of
artificial intelligence, ML can automatically generate models
that can analyze large-scale complicated data and provide
more accurate prediction results. From the algorithmic point
of view, the human–virus PPI prediction task can be regarded as
a binary classification problem for which supervised learning
is commonly employed. In other words, ML-based approaches
build predictors based on training data consisting of interacting
protein pairs (PPIs) and noninteracting protein pairs (non-PPIs)
(Figure 4A). Several major factors, such as data sufficiency,
data quality, negative sample selection, feature extraction
methods and ML algorithms, would affect the performance of
ML models. We mainly summarize and discuss these issues as
follows.

Sample selection

Data sufficiency and data quality. A sufficient number of training
samples are a prerequisite to acquiring a reasonable ML model.
Compared with intraspecies PPIs, data scarcity is more serious in
the prediction of human–virus PPIs. Initially, ML-based human–
virus PPI predictions mainly focused on some viruses of high
concern (e.g. HIV) due to the abundant experimental PPIs. In
general, a sufficient amount of human–virus PPI data should
be collected to train the predictor. For viruses with a small
amount of data, transfer learning can be used to borrow useful
data, information or models from homologous species [83–85].

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab029/6161422 by guest on 07 April 2021



Computational studies on human–virus PPIs 7

Table 4. Summary of existing ML-based human–virus PPI prediction methods

Authors Features Species ML method Negative sampling Year

Tastan et al. [59] Sequence (sequence
similarity), network,
biological function
(GO, domain-motif,
post-translational
modification) and
expression (gene
expression, tissue
expression) features

Human–HIV-1 RF Random sampling 2009

Dyer et al. [93] Sequence, network
and biological
function (domain)
features

Human–HIV SVM Random sampling 2011

Cui et al. [94] Sequence features Human–HPV/HCV SVM Random sampling 2012
Mei et al. [85] Biological function

(GO) features
Human–HIV-1 SVM + probability

weighted ensemble
transfer learning
model

Combination of
random sampling
and exclusiveness of
subcellular
colocalized proteins

2013

Barman et al. [96] Sequence, network
and biological
function
(domain–domain
association) features

Human–virus SVM Random sampling 2014

Emamjomeh et al.
[97]

Sequence, network,
biological function
(post-translational
modification),
expression (tissue
expression) and
evolutionary
information features

Human–HCV Ensemble learning
based on SVM, RF, NB
and MLP

Random sampling 2014

Eid et al. [87] Sequence features Human–virus SVM Dissimilarity-based
negative sampling

2016

Yang et al. [112] Protein embeddings Human–virus RF Dissimilarity-based
negative sampling

2020

Lian et al. [76] Sequence and
network features

Human–HSV-1 RF Random sampling 2020

Dey et al. [6] Sequence features Human–SARS-CoV-2 Ensemble learning
based on RF,
SVM-polynomial,
and SVM-radial

Degree-based
negative sampling

2020

However, this approach is only a stopgap measure and would be
less effective if the target viruses are far from the source viruses.
The data quality also cannot be ignored and might have a greater
impact on model quality. The limitations of the experimental
methods result in the inevitable noise of human–virus PPI data
in the databases. Thus, some measures need to be taken to filter
the data. For example, PPIs with multiple reports or identified
through low-throughput experiments are preferred.

Negative sample selection. In addition to positive samples, nega-
tive samples are also required in training a supervised learning-
based model. Due to the difficulty of obtaining experimental
evidence that two proteins are noninteracting, the so-called
“gold standard” of non-PPIs is hard to establish. The common
method for negative sample selection is random sampling
[86], which randomly selects a certain number of human–virus
protein pair combinations without interaction evidence. The
underlying assumption is that the total number of negative

samples is markedly larger than that of the positive samples, and
random sampling can thus identify real noninteraction samples
with a high probability. The shortcoming of this simple negative
selection method lies in the inclusion of PPIs, which might yield
biased prediction performance to some extent. To overcome
this shortcoming, other negative sample selection strategies
have been proposed. Mei et al. [85] eliminated the subcellular
colocalized protein pairs based on randomly selected negative
samples and found that the performance was better. However,
the resulting negative sample data cannot represent those
protein pairs that share subcellular colocalization but do not
interact. The dissimilarity-based negative sampling approach,
which was developed by Eid et al. [87], appears to make more
biological sense. The core idea is that if two viral proteins share
sequence similarity (i.e. sequence identity > 20%), a human pro-
tein that interacts with one of the viral proteins will not be able
to pair with the other as a negative sample. Very recently, Dey
et al. proposed a new negative sampling method for predicting
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Figure 4. Flowcharts of training human–virus PPI predictive models by traditional ML algorithms and two DL algorithms. (A) Traditional ML methods first perform

complicated feature engineering on the dataset and then input the feature vectors into the classifier (e.g. KNN, NB, RF, SVM and MLP) for model training. (B) A simple

diagram showing the model training process of CNN or RNN. In general, CNNs consist of one or more convolutional layers and multiple fully connected layers. Here, a

CNN containing two convolutional layers (‘Conv1’ and ‘Conv2’) and two fully connected layers (‘FC1’ and ‘FC2’) is shown. RNN establishes weight connections between

neurons in the same layer, in which each input is dependent on the previous input in a time series.

human–SARS-CoV-2 PPIs [6] that considers the degree of human
proteins in the human PPI network. More specifically, these
researchers randomly selected lower degree human proteins
to pair with virus proteins as negative samples. The above
strategy was inspired by the observation that virus proteins
tend to target higher degree human proteins [63, 88]. To avoid
the construction of negative samples, some methods have been
developed to learn the interaction patterns only from positive
samples [89–91]. However, these methods inevitably have
a higher risk of yielding false positives without learning
noninteractive patterns.

Another open issue is the ratio of positive-to-negative
samples. The simplest way is to use a balanced ratio of positive-
to-negative samples (i.e. 1:1). However, training the model with

a balanced ratio will overestimate the performance of the model
because the actual number of negative samples is markedly
larger than that of positive samples. In contrast, selecting an
extremely unbalanced positive-to-negative sample ratio will
cause the model to be biased toward learning the characteristics
of negative samples, which will reduce the generalization ability
of the model. To address this issue, we propose a possible
strategy to choose an optimal sample ratio in model training.
First, the ratio of positives to negatives in the test set should
be fixed at the real ratio of positives to negatives. This test
set should then be used to assess the performance of models
trained on the training set with different ratios of positives to
negatives. By doing so, an optimal ratio in the training set can
be determined.
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Feature engineering

As an important step in ML, feature engineering involves the
establishing an encoding scheme that converts training data into
machine-recognizable data representations (i.e. feature vectors)
[92]. Seeking suitable encoding schemes is an effective approach
for developing a powerful ML predictor. Currently, the classical
encoding schemes for predicting human–virus PPIs mainly
include sequence-based features [59, 76, 87, 93–95], network-
based features [59, 76, 93, 96, 97], biological function-based
features [59, 85, 93, 96, 97], expression features [59, 97, 98] and
evolutionary information [97]. Among these features, sequence-
based features and network-based features are frequently used
and often result in good performance. Compared with the above-
mentioned traditional feature engineering methods, more
advanced feature extraction methods have been proposed with
the rise of deep learning (DL) [99]. These new encoding schemes
are collectively referred to as protein embedding methods
[100], which are derived from natural language processing.
Some traditional feature extraction methods and novel feature
embedding methods are further elaborated as follows.

Sequence-based features. The secret of the interaction between
two proteins might lie in their sequences because the sequence
of a protein determines its structure and thus its function.
The simplest sequence-based encoding scheme for predicting
human–virus PPIs involves calculating the amino acid compo-
sition [96]. In addition, some methods first classified amino
acids into several groups (six or seven groups) according to their
physicochemical properties and then calculated the K consecu-
tive amino acid group composition [87, 93, 94]. The frequency of
triplet amino acid groups (i.e. K = 3, also called ‘conjoint triad’
[101]) is often calculated for each protein. To predict host–virus
PPIs, Zhou et al. [95] employed another encoding scheme based
on dividing amino acids into seven categories that calculates the
composition, transition and distribution of amino acid groups.

Network-based features. This type of feature is derived from
the topological characteristics of the human PPI network and
was inspired by the previous finding that viruses evolve to
target human proteins with unique topological properties in the
human PPI network [59]. For instance, virally targeted human
proteins often appear as hubs (proteins with many interacting
partners) and bottlenecks (proteins that are central to many
paths in the network) in the human PPI network [18, 63, 88]
(Figure 2B). In addition to the degree and betweenness centrality,
other network properties, such as the clustering coefficient, have
also been used [59, 76, 97]. In short, the centrality of a human
protein in the human PPI network is an indicator of whether
the human protein is targeted by virus proteins. In general,
these network topology parameters can be easily calculated
from some well-known network analysis tools or packages, such
as Cytoscape [102] and the R package igraph [103]. However,
the network properties of human proteins cannot be obtained
if they do not appear in the current human interactome. To
address this issue, a usual imputation method is to replace the
missing parameters with mean values or with the values of
homologous/similar proteins.

Biological function-based features. This feature type includes gene
ontology (GO) features [85], pathway features [91], domain fea-
tures [59, 93, 96] and post-translational modification features
[59, 97, 98]. Among these, GO features provide the most com-
prehensive display of protein functional features. GO [104] is
a widely used gene/protein functional annotation system that

provides a defined vocabulary of gene/protein attributes from
three biological aspects (i.e. cell components, molecular func-
tions and biological processes). Each protein can be annotated
with one or more descriptive GO terms. The GO features in
human–virus PPI prediction mainly consider the following two
points [105]: (i) proteins located in the same cell compartment
are more likely to interact than proteins residing in spatially sep-
arated compartments and (ii) proteins that participate in similar
biological processes or perform similar molecular functions are
more likely to interact. Tastan et al. [59] developed two GO-based
features named ‘pairwise GO similarity’ and ‘neighboring GO
similarity’, which measure the GO similarity between the HIV-
1 protein and the human protein in a protein pair and the GO
similarity between the HIV-1 protein and the human protein’s
partners, respectively. Given that some proteins still lack GO
information for extracting this type of feature, Mei et al. [85] pro-
posed a transfer learning method to transfer the GO information
of homologs to enrich or substitute for the GO information of
targets. However, the lack of GO information remains a major
drawback of the GO-based encoding scheme.

Protein embeddings. As a new type of feature engineering,
protein embeddings were derived from the word embedding
technique developed in natural language processing [106].
Briefly, word embedding is actually the process of converting
a word in a sentence, a paragraph or an article into a distributed
representation [106]. The main idea is to map each word in the
corpus to a unique, continuous and low-dimensional vector in
the vector space, in which the direction and position of this
vector can measure the meaning and emotional color of the
word to some extent. The neural network can be modeled
according to the context of the word and the relationship
between the context and the target word, and each word
can then finally derive its corresponding word vector from
the model [107]. Among the several neural network models
developed for word embedding, the two most famous are
the continuous bag-of-words (CBOW) model and skip-gram
model proposed by Mikolov et al. [108]. The word2vec [107]
approach was then developed to implement these two models
of word embedding. The doc2vec [109] approach, which is
an extension of word2vec, learns representations from entire
sentences, paragraphs or documents not just surrounding
context words. In recent years, these embeddings have also
been rapidly applied in the representation of protein sequences
[92, 110, 111]; in this method, the protein sequence is regarded
as a long sentence, and the k-mers derived from the protein
sequence are treated as words (Figure 3B). In our previous work
[112], a large number of protein sequences from the Swiss-
Prot database [113] were used to train the doc2vec model,
and the protein sequences from the human–virus PPIs were
then fed into the model to obtain their vector representations.
The embedding inferred from doc2vec was found to be
superior to that obtained with the traditional sequence-based
encoding schemes. Similarly, the node2vec [114] approach is
an upgraded version of the traditional network parameter
encoding, which can learn the feature representations for
nodes in the graph/network (Figure 3B). In fact, node2vec first
uses random walks to generate many node wandering path
sequences and thus to cleverly convert the node embedding into
word embedding. Expanding on this idea, GO2vec[115] utilizes
the GO hierarchy graph. The node2vec and GO2vec approaches
have been tentatively applied for intraspecies PPI prediction
[115, 116] and have achieved promising results. Therefore, these
methods deserve more attention in the future prediction of
human–virus PPIs.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab029/6161422 by guest on 07 April 2021



10 Lian et al.

ML algorithms and predictive frameworks

Traditional ML algorithms, such as k-nearest neighbor (KNN),
naïve Bayes (NB), random forest (RF), support vector machine
(SVM) and multilayer perceptron (MLP), have been widely
employed for the development of bioinformatics prediction
methods. The choice of ML algorithms depends on the
classification tasks or training data. The optimal combination
among different ML algorithms and encoding schemes also
needs to be selected according to the actual performance. To the
best of our knowledge, SVM and RF are two frequently used ML
algorithms for predicting human–virus PPI in recent decades and
are generally superior to other popular ML algorithms. Figure 4A
shows the process of training the model with traditional ML
algorithms.

In addition to traditional ML methods, DL algorithms [99]
have also been successfully applied to solve various biological
prediction issues, including PPI prediction. As a branch of ML,
DL has blossomed and grown in popularity over the last decade.
Due to the limited amount of data and computing resources, the
earliest neural network architecture was too simple to demon-
strate its full advantages. Due to the improvements in computing
power and the emergence of massive data, particularly after
2010, various deep neural network frameworks have emerged
and have exhibited powerful performance in a series of bio-
logical prediction and classification tasks [117, 118]. Regarding
the issue of PPI prediction, several DL frameworks [119–123]
have also been developed for predicting intraspecies PPIs. These
studies commonly use convolutional neural networks (CNNs)
[124, 125], which are widely used for modeling images to auto-
matically extract local features, or recurrent neural networks
(RNNs) [126], which are designed to preserve context and long-
term memory information for sequential data. The input of CNN
or RNN does not require the complicated encoding schemes
described above because the deep neural network itself is equiv-
alent to a process of deep extraction of features. CNN mainly
consists of one or more convolutional layers and pooling layers
(Figure 4B), whereas the core idea of RNN is that a sequential
relationship exists between inputs at different times in the
network (Figure 4B). The endpoint of CNN or RNN is usually one
or more fully connected layers. As far as future computational
prediction of human–virus PPIs is concerned, these frameworks
can also be applied to build more powerful prediction models.

It is generally acknowledged that integrating various classi-
fiers or combining multiple features to conduct model training
will yield better results than a single classifier or a single feature
[127–129]. For instance, Emamjomeh et al. [97] employed stacking
to combine four component learners (i.e. SVM, RF, NB and MLP) to
predict human–HCV PPIs, and in this approach, the output from
each classifier was considered as the input of a meta-learner (i.e.
MLP) to produce the final prediction results. In terms of feature
integration, the simplest way to combine multiple features is
to concatenate them into a long feature vector. However, the
resulting high-dimensional vectors might cause dimensional
explosion and the contributions of some small feature types to
be ignored. In other words, the optimal combination requires
intensive computational experiments.

Model evaluation

When building the model, the collected dataset should be par-
titioned into a training set and an independent test set, and
the ratio of partitions is related to the abundance of the avail-
able data. Note that the independent test set should not be
used for training at all but rather only used to assess the final
performance of the trained model. To avoid overfitting in the

training process, k-fold cross-validation (k = 5 or 10 are often
adopted) is commonly conducted with the training set. The
parameters of the model can be optimized according to the
performance of the k-fold cross-validation. Eventually, the per-
formance of the k-fold cross-validation and the independent test
will be jointly used to evaluate the overall performance of the
developed prediction method.

Several performance evaluation indicators commonly used
in binary classification models include Accuracy, Precision,
Sensitivity (i.e. Recall) and Specificity, which are derived from
the confusion matrix [130]. These indicators are calculated for
a given classification threshold, whereas two types of curves
called the receiver operating characteristic curve (ROC curve)
and the precision-recall curve (PR curve) are plotted by gradually
changing the thresholds. The area under the ROC or PR curve is
usually used as a more accurate indicator to further measure
the model performance. To properly evaluate the performance,
it is worth emphasizing the following issues. The performance
of a predictive model is highly relevant to the collection of the
dataset (e.g. the ratio of positive to negative samples, the filtering
of positive samples and the construction of negative samples).
To avoid the generation of biased benchmarking results when
comparing different human–virus PPI prediction methods, the
model must be trained and assessed with the same datasets.
Moreover, the PR curve is more suitable for evaluating the model
performance when the ratio of positive and negative samples is
unbalanced. Due to the lack of ‘gold standard’ human–virus
PPI datasets, fair performance comparison among different
prediction methods remains a challenging task. Due to the
increasing availability of data regarding human–virus PPIs, we
hope that some standard training and testing datasets can
be constructed in the future, and these benchmark datasets
will definitely facilitate the reliable comparison of different
prediction methods.

Biological applications of human–virus PPI
networks
Based on experimentally verified or predicted human–virus
PPIs, the corresponding human–virus PPI networks can be
constructed. Further exploration of the networks can capture
more biologically meaningful knowledge. On the one hand,
a deeper understanding of the human–virus interaction
mechanism could be gained through network analysis, structure
analysis and integration analysis with other multifaceted data.
On the other hand, human–virus PPIs could be applied to develop
new antiviral therapeutic strategies, such as drug development.

Applications in mechanistic analysis of the
human–virus relationship

By analyzing the topological properties of each protein node
in the human PPI network, the key patterns of virally targeted
human proteins in the PPI network can be captured. As men-
tioned earlier, Cytoscape [102] and igraph [103] can analyze mul-
tiple topology parameter properties for a network. It is a widely
proven consensus that viruses tend to attack hub proteins or
bottleneck proteins in the human PPI network [63, 88] (Figure 2B).

The analysis of the human–virus interactome from different
levels of protein structure enables an in-depth understanding
of the interaction mechanism. At the protein domain level,
Itzhaki [131] and Zheng et al. [132] analyzed the PPIs between
viruses and human, and both of these research groups found
that viral domains preferentially interact with human hub
domains. From the perspective of shorter motif structure, motif
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mimicry (Figure 2C) was found to be a more commonly used
strategy for viruses to more efficiently interact with human
proteins [64, 133]. Due to the limitation of genome size, viruses
evolve multiple short linear motifs to effectively mimic, hijack
and manipulate complex host processes for survival [64].
Furthermore, from the perspective of the 3D structure of the
protein, a systems understanding of interface mimicry can be
achieved. Franzosa and Xia [67] depicted the structural principles
within the human–virus PPI network and reconstructed the
human–virus structural interaction network by mapping curated
and predicted 3D structural models of human–virus and human–
human protein complexes. Because human–virus PPIs are
transient and regulatory in nature, researchers have found that
viral proteins are more inclined to use interface mimicry to
achieve efficient interactions without any sequence or structural
similarity to virally binding human proteins’ partners.

Human–virus interactome analyses in the context of human
protein complexes have also been performed. It has been well
established that human protein complexes are heavily involved
in viral infection [31, 134]. Jäger et al. unveiled a number of host
complexes targeted by viral proteins [31] and these included
eIF3d (a subunit of eukaryotic translation initiation factor 3)
cleaved by HIV protease. Our previous study revealed that viral
targets are enriched within human protein complexes and tend
to have a high within-complex degree [134]. Moreover, we found
that complexes necessary for viral replication are simultane-
ously targeted by multiple viruses [134].

Furthermore, by combining other data information, such as
the pathway annotation [30, 63], GO [31, 33], gene expression
[63, 134], protein abundance [33, 63] and evolutionary rate [63,
134] of proteins, the patterns mediating human–virus PPIs
can be better deciphered. Through integrative analysis, virally
targeted human proteins were found to be highly conserved
[31, 63], expressed abundantly across multiple tissues [63], or
play specific roles in multiple pathways or processes, such as
cell cycle regulation, nuclear transport and immune response
[63, 88].

Taken together, the results from large-scale human–virus
interactome analyses involving the integration of multifaceted
data have provided a comprehensive and increasingly clear
landscape of human–virus relationships. The above observa-
tions have provided some fundamental hints for understanding
how viruses evolve to interact with human proteins that
might control critical human cellular processes. It should be
emphasized that the computational prediction and mechanistic
analysis of human–virus PPIs are mutually reinforcing. On the
one hand, the reliable prediction results facilitate biological
analysis from a more complete human–virus interactome. By
employing structural information to infer the human–virus
PPI network, Lasso et al. [82] not only rediscovered the existing
biological knowledge but also obtained a series of new biological
findings. For instance, these researchers observed the shared
and unique infection mechanisms employed by different viruses
[82]. On the other hand, the patterns inferred from biological
analysis can be rapidly used for designing new strategies to
predict human–virus PPIs. For example, the network-based
encoding scheme is often derived from the topological analysis
of the experimentally identified human–virus PPI network
[63,88].

Applications in the development of new therapeutic
strategies

The available human–virus interactome can play a crucial role
in antiviral drug discovery. The conventional treatments for viral

diseases mainly attack the components of the virus, for example,
viral enzymes, to break the virus structure and functionality [135,
136]. However, the rapid mutation of the viral genome makes
the drug quickly ineffective. To develop more efficient antiviral
drugs, host-oriented drug target discovery [135, 136] is an impor-
tant direction in which human–virus PPIs have been a crucial
resource. Human proteins that are indispensable for viruses dur-
ing infections but are not essential for human cells could serve
as potential antiviral targets. In addition, drug development
is a time-consuming and costly process. Even if the drug has
been developed for a suitable target, it remains far from being
officially approved for marketing. Therefore, finding new uses
for traditional medicines (i.e. drug repositioning or drug repur-
posing) is a very promising approach for saving time and cost in
drug development. Some known drug–target interactions can be
obtained from databases, such as DrugBank [137] (http://www.
drugbank.ca) and Therapeutic Target Database [138] (http://db.i
drblab.net/ttd/). By integrating drug–target interactions, human–
virus PPIs, human PPI networks and other information, drug
repurposing can be performed. It is worth mentioning that in
response to the sudden outbreak of COVID-19 caused by SARS-
CoV-2, several research teams have rapidly found druggable
human targets or drug repurposing candidates through human–
virus PPI analysis [33, 139–141].

The established human–virus PPI networks can also provide
new evidence on diseases associated with the viruses under
investigation. By combining disease-gene associations and
human–virus PPIs, a link can be constructed to find the
potential relationship between viruses and disease occurrence
or development. As a public database to store associations
between diseases and genes, DisGeNET [142] (http://www.di
sgenet.org/) can be employed for such tasks. Zheng et al. [132]
performed an analysis that links human–virus PPIs to diseases
by integrating human–virus PPI, DDI and disease-related gene
information, and their results uncovered several unknown virus–
disease relationships. More recently, we also reconstructed the
PPI network between human and HSV-1 and obtained potential
new evidence of the association between HSV-1 infection and
Alzheimer’s disease [76].

It should also be mentioned that a causal relationship has
been demonstrated between 12% cancers and seven different
viruses (e.g. cervical cancer caused by HPV) [143, 144]. There-
fore, the analysis of human–virus PPI networks might shed
new light on the therapeutic strategies for cancers [30, 145].
Eckhardt et al. [30] developed an integrated strategy based on
the human–HPV PPI network and tumor genome analysis for in-
depth exploration, and their approach led to the identification of
multiple carcinogenic pathways promoted by human–HPV PPIs.
Methodologically, the integration of human–virus PPI mapping
and tumor genome analysis defines a pipeline for other virally
induced cancers to further analyze the relationship between
human–virus PPIs and oncogenesis.

Summary and future perspectives
To explore the interplay between human and viruses, establish-
ing a global view of the human–virus interactome is critical.
Recent years have witnessed the rapid accumulation of human–
virus PPI data, which have been summarized in many databases
for the convenience of the research community. A large num-
ber of human–virus PPI prediction methods, particularly ML-
based approaches, have been elegantly developed. Moreover,
many large-scale analyses based on experimental or predicted
human–virus PPI networks have been performed. Due to the
joint efforts of experimental and computational biologists, we
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have obtained an increasingly complete human–virus interac-
tome and have deciphered fundamental mechanisms governing
human–virus relationships.

Despite two decades of progress in human–virus PPI research,
the current computational studies of the human–virus interac-
tome are still subjected to the following three major limitations
or challenges. First, the performance of existing human–virus
PPI prediction methods in real applications remains unsatisfac-
tory. Second, the predicted human–virus PPI data are not easily
accessible to the community. Third, the speed of converting
experimental or predicted human–virus PPIs into new scientific
discoveries or practical applications should be accelerated.

Several studies have attempted to address the above limita-
tions or challenges. First, we still need sufficient high-quality
human–virus PPI data for conducting large-scale interactome
analysis and constructing reliable predictive models. Second, in
terms of prediction algorithms, DL algorithms should be rapidly
applied to the prediction of human–virus PPIs because DL has
recently exhibited powerful performance in solving a series of
protein bioinformatics prediction tasks, including the prediction
of intraspecies PPIs [121, 123]. Moreover, only a few existing
methods provide online predictors, and thus, more useful pre-
diction software programs or web servers are needed to allow
experimental scientists to take full advantage of the progress
in prediction methods. Third, the establishment of tissue- or
spatiotemporal-specific human–virus PPI networks should be
considered. Given the potential tissue preference of viruses,
human–virus PPIs might differ among different tissues of the
human host. In addition, the establishment of PPI networks with
spatial and temporal characteristics can better demonstrate the
dynamics of the infection process. Construction of the structural
human–virus interactome and integration of multiomics data
associated with the human–virus interactome are also two effec-
tive approaches for better elucidating a mechanistic understand-
ing of human–virus relationships. Last but certainly not least,
more attention should always be paid to converting the available
human–virus interactome data into new therapeutic strategies
for human diseases associated with viruses in the future.

Key Points
• In past decades, advances in experimental technology

have led to the identification of an unprecedented
number of human–virus PPIs and the establishment
of a series of human–virus PPI databases.

• Cost-effective methods for predicting human–virus
PPIs have been intensively developed to complement
experimental efforts, in which machine learning-
based approaches are playing an increasingly impor-
tant role.

• The booming deep learning methods and new fea-
ture engineering approaches (e.g. the protein embed-
ding techniques) are propelling the performance of
machine learning-based methods to a new level.

• Computational prediction methods and large-scale
analysis for human–virus PPIs are mutually reinforc-
ing. On the one hand, the prediction results allow us
to capture the global landscape of the human–virus
interactome more rapidly, and on the other hand, the
patterns/rules inferred from human–virus PPI analysis
can be used to develop new prediction methods.

• The available human–virus PPI networks have been
applied to understand human–virus relationships and
to develop antiviral therapies.
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