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Abstract

While leading to millions of people’s deaths every year the treatment of viral infectious diseases remains a huge public
health challenge.Therefore, an in-depth understanding of human–virus protein–protein interactions (PPIs) as the molecular
interface between a virus and its host cell is of paramount importance to obtain new insights into the pathogenesis of viral
infections and development of antiviral therapeutic treatments. However, current human–virus PPI database resources are
incomplete, lack annotation and usually do not provide the opportunity to computationally predict human–virus PPIs. Here,
we present the Human–Virus Interaction DataBase (HVIDB, http://zzdlab.com/hvidb/) that provides comprehensively
annotated human–virus PPI data as well as seamlessly integrates online PPI prediction tools. Currently, HVIDB highlights
48 643 experimentally verified human–virus PPIs covering 35 virus families, 6633 virally targeted host complexes, 3572 host
dependency/restriction factors as well as 911 experimentally verified/predicted 3D complex structures of human–virus PPIs.
Furthermore, our database resource provides tissue-specific expression profiles of 6790 human genes that are targeted by
viruses and 129 Gene Expression Omnibus series of differentially expressed genes post-viral infections. Based on these
multifaceted and annotated data, our database allows the users to easily obtain reliable information about PPIs of various
human viruses and conduct an in-depth analysis of their inherent biological significance. In particular, HVIDB also
integrates well-performing machine learning models to predict interactions between the human host and viral proteins that
are based on (i) sequence embedding techniques, (ii) interolog mapping and (iii) domain–domain interaction inference. We
anticipate that HVIDB will serve as a one-stop knowledge base to further guide hypothesis-driven experimental efforts to
investigate human–virus relationships.
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Introduction
Viral infectious diseases remain a major threat to public health
around the world. One important milestone toward under-
standing the pathogenesis of viral infections and developing
therapeutic strategies is to unravel protein–protein interactions
(PPIs) between the human host and various viral proteins since
human–virus PPIs directly reach into viral infection pathways
and host immune responses [1]. As infections with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) have triggered
a global pandemic, treating COVID-19 remains a challenge as a
consequence of limited knowledge about the molecular details
of the ways SARS-CoV-2 infects host cells [2–5]. Experimental and
prediction techniques have been rapidly applied to decipher the
interactome between humans and SARS-CoV-2 [2–6], which has
become an important entry point to explore the pathogenesis of
SARS-CoV-2, identify potential drug targets and develop effective
antiviral drugs [2, 4, 7, 8].

In past decades, low-throughput [e.g. co-immunoprecipitation
(Co-IP)] and high-throughput [e.g. mass spectrometry (MS)
and yeast two-hybrid (Y2H)] techniques [9–11] allowed the
determination of human–virus PPIs on an unprecedented scale,
providing an abundance of PPI data that have been stored in
a series of state-of-the-art host-pathogen protein interaction
databases. For example, VirHostNet [12] integrates intra- and
inter-species (i.e. human–human, virus–virus and human–
virus) PPIs and provides table-based and graph-based network
visualization. VirusMentha [13] curates non-redundant host-
virus PPI data and provides weekly automated data updates.
PHISTO [14] incorporates host-pathogen interaction related
information and allows users to access the functional and
network topological properties of pathogen targeted human
proteins. Following the strategy used in the STRING database
[15], Viruses.STRING [16] quantitatively measures the reliability
of interactions between viral and human proteins. In addition,
some database resources are only designed for an individual
virus species such as the NCBI HIV-1 Human Interaction
Database [17], DenHunt [18] and HCVpro [19]. Considering the
tremendous value of human–virus PPI data, the development
of more advanced data resources to facilitate the research
community is still desirable.

Current technical advances have accelerated the accu-
mulation of experimental human–virus PPI data, providing
an unprecedented opportunity for the development of reli-
able computational methods to predict human–virus PPIs.
Computationally cost-effective PPI prediction methods can
complement experimental efforts and allow us to capture
the global landscape of human–virus interactomes more
rapidly. Methods such as interolog mapping [20–23], domain–
domain/motif interaction (DDI/DMI) inference [24–26], structural
homology-based method [27, 28] and machine learning (ML)
approaches [29–35] have been widely employed to predict
potential interactions on a proteome-wide scale. Undoubtedly,
providing prediction methods online in some human–virus PPI
data resources can effectively help the users to computationally
predict potential PPIs between a virus and the human host in
the absence of abundant experimental evidence.

Here, we introduce a comprehensive human–virus PPI
database, HVIDB (http://zzdlab.com/hvidb/), that (i) combines
multiple human–virus PPI data resources and (ii) provides
a computational platform to predict interactions between
human and viral proteins. Designed as a powerful one-
stop resource for human–virus interactions, our database
components provide experimentally verified PPIs, 3D complex

structures of protein interactions, virally targeted human
complex information and manually collected host factor data. As
for auxiliary data that revolve around human–virus interactions,
our database further integrates and annotates interactions
with differential expression information of human genes post-
viral infections, human tissue-specific gene expression profiles
and functional enrichment analysis of virus-targeted human
proteins. Furthermore, our prediction platform integrates
three state-of-the-art prediction methods including interolog
mapping, domain–domain interaction (DDI) inference and
a novel ML approach based on our previous work [36] that
adopts a sequence embedding-based random forest method
(i.e. doc2vec + RF).

Materials and methods
Collection of experimentally verified human–virus PPI
data
We collected experimentally verified PPIs from five public
databases (i.e. HPIDB [37], PHISTO [14], VirHostNet [12], Virus-
Mentha [13] and PDB [38]) and recently published literature [6],
allowing us to obtain 48 643 human–virus PPIs after removing
self, genetic and redundant interactions, including 303 human-
SARS-CoV-2 PPIs [6]. In particular, we mapped protein IDs from
different databases to UniProt IDs, Entrez Gene IDs, gene names
or protein names as query options in HVIDB.

Three-dimensional complex structures of human–virus
PPIs
Three-dimensional complex structures in the HVIDB database
were collected and processed from human–virus experimental
complex structures in the PDB database [38] or predicted by
using homology modeling of protein complexes (HMPC) [39,
40] (Supplementary Figure S1). Briefly, HMPC mainly captures
(i) homologous template selection, (ii) monomer modeling and
(iii) complex modeling. First, we selected the best homologous
template for each protein by BLAST searching the PDB database.
In particular, we set the thresholds to 30% sequence identity
and 40% alignment coverage [39, 40] and considered the tem-
plate candidate with the highest sequence identity as the best
template. Note, that HMPC requires two monomer templates of
each protein involved in a PPI that belong to different chains
of the same protein complex in PDB. Second, we constructed a
monomer model for each protein based on the selected template
through Modeller (version 9.19) [41]. Finally, we combined the
two monomer models into the final complex structure and
calculated protein interaction sites based on these experimen-
tal/predicted complex structures, that are available to users for
download. Further methodological details of complex structure
construction and interaction site calculation are available in our
previous publication [40].

Virally targeted human protein complexes

Collecting human protein complexes from CORUM (http://mi
ps.helmholtz-muenchen.de/corum/) [42] and hu.MAP (http://hu.
proteincomplexes.org/) [43], we obtained 2923 and 4588 human
protein complexes, respectively. While complexes in CORUM
are experimentally determined, hu.MAP also contains many
complexes reconstructed through ML methods, providing better
coverage. Pointing to virally targeted human protein complexes,
we mapped human–virus PPIs to human protein complexes and
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found 6633 virally targeted human protein complexes, revolving
around 37 094 human–virus PPIs.

Differential expression analysis

To identify differentially expressed genes (DEGs) post-viral
infections, we first manually screened human gene expression
series of microarray/RNA-Seq experiments in human tissues
and cell lines that were infected with viruses from the
Gene Expression Omnibus (GEO) [44] and the Sequence Read
Archive [45].

Each GEO series contains multiple expression samples
capturing control and different infection conditions (e.g. tissues,
cells, virus species and infection time points). In the same
expression series, we further manually binned samples into
different control-infection groups, that refer to specific infection
conditions, and calculated corresponding DEGs. Following the
strategy used in [46], we also manually curated different control-
infection groups, capturing GEO series/platform, PubMed
ID, tissues/cells, viral species and viral families. To ensure
the quality of expression data, we only retained published
GEO expression samples of both microarray and RNA-Seq
experiments. As for microarray experiments, we only retained
single-channel and discarded dual-channel microarray data.
These manual filtering/annotation steps and DEG calculations
allowed us to obtain DEGs in 411 control-infection groups
from 95 microarray GEO series and 121 control-infection
groups from 34 RNA-Seq GEO series, which include 4453 public
human expression samples covering the infections of 20 viral
families.

Microarray data

After normalization and log2 transformation of microarray
expression values, DEGs were determined through the R package
‘limma’ [47], defined as genes with |log2FC| ≥ 1.5 and false
discovery rate (FDR)-adjusted P-value ≤ 0.05. Note that all gene
probes were converted to Entrez Gene IDs directly or by using
the Ensembl BioMart tool [48]. If multiple probe sets were
mapped to the same gene (i.e. a gene has been determined
multiple times), we averaged corresponding gene expression
values.

RNA-Seq data

To control the quality of reads, we first removed adapter
sequences and low-quality ends with Trimmomatic [49]
and aligned trimmed reads of each sample to the human
h38 reference genome as of GENCODE [50] through HISAT2
[51]. Subsequently, we used StringTie [52] to assemble the
transcriptome of each sample and estimated the expression
levels of all genes. Furthermore, we utilized StringTie’s script
‘prepDE.py’ to determine raw gene counts and determined DEGs
through the R package ‘DESeq2’ [53], where we considered genes
as differentially expressed when |log2FC| ≥ 1.5 and FDR-adjusted
P-value ≤0.05. Note that all genes were represented by their
Ensembl IDs.

Tissue-specific expression for virally targeted human
proteins

While tissue-specific transcript-level expression values of 37
tissues were extracted from the Human Protein Atlas database
[54], the prevalence of a gene expression in a (given group
of) tissue(s) was categorized through ‘tissue enriched,’ ‘group

enriched,’ ‘tissue enhanced,’ ‘low tissue specificity’ and ‘not
detected.’ Finally, such human protein-coding gene expression
data were mapped to human–virus PPIs providing tissue-
specific expression information for each virally targeted human
protein.

Enrichment analysis of virally targeted human proteins

Gene Ontology enrichment analysis

Gene Ontology (GO) annotation data of human proteins were
downloaded from http://current.geneontology.org/ [55]. Using all
human proteins mapped to three GO terms categories [i.e. cellu-
lar component, biological process (BP) and molecular function]
as reference sets, enriched GO terms of viral targets were deter-
mined by hypergeometric tests, where corresponding P-values
were Bonferroni corrected.

Kyoto Encyclopedia of Genes and Genomes pathway enrichment analy-
sis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
data were downloaded from https://www.genome.jp/kegg/ [56].
Using all human proteins in KEGG pathways as a reference
set, enriched KEGG pathways of viral targets were identified
by hypergeometric tests where corresponding P-values were
Bonferroni corrected.

For each virally targeted human protein set, the above two
types of enrichment analyses were preprocessed and corre-
sponding results were deposited in HVIDB.

Host factors

To further understand how the human host responds to viral
infections, we manually collected 3572 host factors of the human
immunodeficiency virus (HIV), human papillomavirus (HPV),
dengue virus (DENV), zika virus (ZIKV), ebola virus (EBOV) and
influenza A virus subtype H1N1 from the literature. Host factors
include host dependency factors (HDFs), that help viruses to
infect human host cells, and host restriction factors (HRFs) that
restrict viruses to perform their functions (e.g. hinder and limit
viruses to invade human host cells or tissues). To investigate
whether curated host factors are viral targets, we mapped 3572
host factors (2768 HDFs and 804 HRFs) to human–virus PPIs and
obtained 6056 human–virus PPIs that involved host factors. In
particular, host factors are shown not only at the viral target
level but also at the virally targeted human complex level.
Moreover, the complete host factor list can be obtained through
the Download page of HVIDB.

Computational tools to predict human–virus PPIs

To determine whether a given human–virus protein pair
interacts, we utilized a predictive framework integrating three
individual prediction methods to detect potential interactions
(Supplementary Figure S2). Sample selection and prediction
methods are elaborated below.

Sample selection

To establish a gold-standard of high-quality PPIs, we excluded
PPIs from large-scale MS experiments with only one experi-
mental observation. Moreover, redundant PPIs and interactions
between proteins with less than 30 amino acids, more than
5000 amino acids or non-standard amino acids were removed,
allowing us to obtain 31 383 human–virus PPIs. Utilizing
‘Dissimilarity-Based Negative Sampling’ [29, 36], we compiled
a negative PPI set that was 10 times larger than the positive
sample set. Briefly, this negative sampling strategy stipulates
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that a protein pair C–B should not be selected as a negative
sample if viral proteins A and B have similar sequences, and A
interacts with human protein C (i.e. protein pair C–A is a positive
sample). Sets of 31 383 positive and 313 830 negative samples,
thus compiled, were further used for model training and
assessment.

Interolog mapping method

The core idea of interolog mapping is that a potential interaction
between protein A and B occurs if their respective homologs
A′ and B′ interact, defined as the interolog template of A–B.
Briefly, we first collected known PPIs including all intra- and
inter-species interactions from five popular protein interaction
databases including IntAct [57], BioGrid [58], MINT [59], DIP
[60] and HPIDB [37] to obtain an interolog template library.
Subsequently, we employed the scoring scheme of HIPPIE [61]
to assess the template quality. We assigned a quality score
Stemplate to each interolog template according to the experimental
detection techniques used as well as the number of references
reporting the PPI and the number of involved species. To
identify interologs of a given human–virus protein pair, BLAST is
employed to search for homologs by aligning all the sequences
in the PPI template library. Specifically, we considered homologs
if their sequence identity ≥0.3 and the alignment coverage
of query protein ≥0.4. Similar to our previous work [62], the
final interaction probability of a protein pair (SInterolog) combines
all the quality scores of the identified interolog templates
through Bayes integration, SInterolog = 1 − ∏n

i=1(1 − Stemplate),
where n is the number of involved interolog templates of the
query PPI.

DDI inference method

The DDI inference method predicts the interaction probability of
a query protein pair based on the detected interacting domain
pairs. Briefly, we scanned each interacting protein for the
presence of Pfam protein domains using HMMER [63] (E-value
≤10−5). Subsequently, we obtained co-occurrence domain pairs
from known protein interactions to form a comprehensive
DDI library. Domains of query human–virus protein pairs were
also retrieved by searching the Pfam database [64] with the
same threshold. Similar to the interolog mapping method, each
domain pair in the DDI library was assigned a confidence score
SEM through the expectation maximization (EM) algorithm [65].
Finally, the interaction probability score of a protein pair (SDDI)
was determined by integrating the confident scores of DDIs
involved in the query protein pairs through Bayes method, SDDI =
1 − ∏n

i=1(1 − SEM), where n is the number of involved DDIs for the
query PPI.

ML method

We employed our implemented doc2vec + RF approach to
predict interactions between human and viral proteins. Specif-
ically, we applied the doc2vec style learning approach that
allowed us to effectively capture contextual information
of interacting protein sequences through a 32-dimensional
feature vector (details of the doc2vec + RF method are available
in our previous study [36]). Based on such an interaction
representation, we utilized the random forest algorithm
to determine an interaction probability score (SML) ranging
from 0 to 1.

To maximize prediction performance, we combined these
individual scores (i.e. SInterolog, SDDI and SML) in a vector and

trained a logistic regression model, reflecting the overall inter-
action probability for each human–virus protein pair.

Database construction

HVIDB is based on CentOS 7.4, Apache 2.4.6, MySQL 5.5.60 and
PHP 5.4.16. The user interface charts and tables were generated
based on several Javascript-based libraries, such as DataTable.js
and echarts.js. A Javascript graph library Cytoscape.js [66] was
used to display PPI networks. NGL [67], a WebGL-based 3D viewer,
was utilized to display 3D complex structures of PPIs.

Results and discussion
Overall description of HVIDB

As major components, the HVIDB online resource includes a
comprehensive data module and an online prediction platform
for human–virus protein interactions. Currently, HVIDB provides
48 643 experimentally verified human–virus PPIs, 6633 virally
targeted human host complexes, 3572 host factors, 6790 human
tissue-specific gene expression profiles of viral targets, DEGs
post-viral infections from 129 GEO series as well as 911 (474
experimentally verified and 437 predicted) 3D complex struc-
tures of human–virus PPIs and their corresponding 3D interac-
tion sites. The main architecture of HVIDB (Figure 1) contains
the following key features: (i) as for network information, HVIDB
provides an associated human–virus PPI subnetwork for each
query human/viral protein. Considering that viruses tend to
target human complexes, human complex information is inte-
grated into the identified subnetwork for an improved mech-
anistic understanding of viral infections. (ii) As for structural
information, HVIDB provides experimentally verified/predicted
3D complex structure visualization of human–virus PPIs and
corresponding interaction sites. (iii) HVIDB provides differential
expression information of viral targets providing an in-depth
understanding of the ways human host genes respond to viral
infections. Tissue-specific gene expression of viral targets is fur-
ther provided to indicate tissue specificity of the corresponding
human–virus PPIs post-viral infections. (iv) As for functional
annotations, enrichments of GO terms and KEGG pathways are
provided for virally targeted human proteins when querying
a viral protein. Moreover, our manually curated host depen-
dency/restriction factors are mapped onto human–virus PPIs
and virally targeted human complexes, which can be utilized
as a complement to understand the functional roles of virally
targeted human proteins. (v) HVIDB provides a comprehensive
PPI prediction platform to rapidly predict potential interactions
between query human–virus protein pairs in the absence of
experimental information.

Searching interface for PPI associated resources and
usability

HVIDB provides multiple searching/browsing modules, allowing
users to easily access our multifaceted data (Figure 2). Users
can center a search around human/viral proteins to obtain cor-
responding human–virus PPI networks (Figure 2A). Specifically,
entries can be searched through various gene/protein IDs, sym-
bols or keywords (e.g. UniProt ID, gene name and protein name).
HVIDB also allows users to explore PPI data and associated
auxiliary information by browsing through corresponding lists,
covering human–virus PPIs, 3D complex structural information,
virally targeted human complexes, differential expression infor-
mation and host factors (Figure 2B). Furthermore, HVIDB cross-
links PPI information with targets of other single viruses or viral
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Figure 1. Basic functions of HVIDB. HVIDB provides information about (i) networks between viral and human proteins, (ii) structural characteristics of interactions, (iii)
expression levels, (iv) functional annotations of targeted human proteins and (v) tools to predict PPIs. Specifically, HVIDB collects experimentally verified human–virus

PPIs from expert-curated source databases and literature, as well as virally targeted human complexes. Structural information includes experimental/predicted 3D

complex structures and interaction sites of human–virus PPIs. Expression information captures large-scale DEG data post-viral infections and tissue-specific gene

expression information of viral targets while functional annotations mainly provide GO/KEGG enrichments of viral targets. HVIDB also provides manually curated host

factor data as a complement to explore the functional roles of viral targets. High-performing human–virus PPI prediction methods are integrated in HVIDB, allowing

the users to find potential interactions between query viral and human host proteins.

families (Figure 2B). In addition to protein and PPI based queries,
HVIDB provides two individual modules for accessing DEGs post-
viral infections and virally targeted human complexes. In partic-
ular, users can access DEG data through an individual interface
(Figure 2C) by inputting/selecting a GEO series of cell lines/tis-
sues with different time points post infections by viral families
or data type (i.e. microarray data or RNA-Seq data). In a different
way to search HVIDB, users can input human/viral protein or tar-
geted complex ID/names to obtain relevant complex information
(Figure 2D). Finally, HVIDB provides the opportunity to predict
the presence of an interaction between a user-provided pair of
human and viral proteins in FASTA format (Figure 2E).

In a concrete example that revolves around a single pro-
tein of interest, we use HVIDB to find PPIs that involve the
influenza protein ‘NS’ using the UniProt ID ‘P03495’ as search
term (Figure 3). HVIDB presents corresponding search results
on separate pages, including visualization of the corresponding
PPI network, enriched GO terms/KEGG pathways and interac-
tion information table (Figure 3A). In particular, HVIDB provides
detailed functional and structural information about the inter-
acting protein (Figure 3B) as well as PPIs capturing interacting
protein/PPI basic information, PPI comprehensive score, 3D com-
plex structure/interaction sites, virally targeted human com-
plexes, DEGs post-viral infections and tissue-specific expres-
sion information (Figure 3C–H). In addition, users can download
related datasets from the Download Page in HVIDB for local use.

Performance of online PPI prediction platform

While we employed three individual methods to predict
human–virus PPIs, we improved the prediction performance

by combining results of the individual prediction methods
through a logistic regression model. To comprehensively assess

the method’s performance, we randomly sampled 80% of all
human–virus PPIs as a training dataset and considered the
remaining 20% as an independent test set. Assessing the

performance of the three individual methods and the logistic
regression integration method through the area under the
precision-recall curves (AUPRC), we observed that the integrative
model (AUPRC = 0.877) slightly outperformed the best individual
method (i.e. doc2vec + RF method, AUPRC = 0.866) (Figure 4A).
At a recall control of 60%, the corresponding precision values
of these four methods (i.e. interolog, DDI, ML and logistic
regression) were 47.46%, 40.04%, 93.15% and 96.69%, respectively.
However, query viral proteins may not occur in the training set
in real applications. To provide a more rigorous performance
assessment, we sampled a training set with 80% of all PPIs,
assuring that viral proteins in the training data did not
occur in the testing data set. As expected, the performance
of each individual method in this strict testing framework
decreased considerably (Figure 4B). However, the AUPRC of

the integrative model still outperformed the best individual
method by a larger margin (Figure 4B), further indicating the
relevance of integrating individual prediction approaches. At
a recall control of 60%, the corresponding precision values
of these four methods (i.e. interolog, DDI, ML and logistic
regression) were 43.75%, 35.18%, 65.38% and 79.55%, respectively.

As an assessment of their reliability, HVIDB provides the
corresponding individual prediction scores (i.e. SInterolog, SDDI and
SML) and the logistic regression integrative score for each curated
‘ human–virus PPI.
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Figure 2. Main search and browse interfaces of HVIDB. (A) The main interface provides access to PPIs and corresponding metadata through querying a human host or

viral protein. (B) Obtained human-virus PPIs are augmented with gene annotations, structural information of corresponding PPIs, virally targeted human complexes,

host factors and DEGs in different tissues and cell lines post infections. Furthermore, HVIDB also allows users to find human genes that are targeted by other viruses

(families). (C) DEGs post-viral infections can be queried through selecting/inputting a GEO series and a control-infection group. (D) Furthermore, HVIDB allows the users

to search for virally targeted human complexes through a query with a human/viral protein or complex ID/name. (E) Providing a prediction platform, HVIDB allows the

prediction of a potential interaction between a human and a viral protein query.

Human-ZIKV PPI analysis as an application
case of HVIDB
To allow a more comprehensive understanding of the function-
ality of HVIDB, we present the results of a case study of human-
ZIKV PPIs using HVIDB (Figure 5A). ZIKV is a mosquito-borne
flavivirus transmitted through mosquitoes, resulting in serious

complications, such as birth defects in babies and spontaneous
loss of fetuses. Even worse, currently, there are no effective
drugs available for clinical treatment. Although experimentally
determined human-ZIKV PPIs appear in HVIDB, the putative
number of the interactome is unknown. Therefore, we leveraged
the prediction platform of HVIDB to find PPIs between 10 known
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Figure 3. Search results with example query ‘Influenza A virus NS protein.’ In (A), we show the network representation and a scroll-down list of the corresponding

interactions with targeted human proteins that are further analyzed with enriched GO terms and presence in KEGG pathways. (B) indicates detailed protein-specific

functional and structural annotations of the query viral protein NS. As for an example of an interaction that involves NS, we consider CPSF4-NS. Specifically, HVIDB

provides detailed multimodal information, including (C) basic meta-information, (D) reliability, (E) structural characteristics of the underlying PPI, as well as (F) protein

complexes that CPSF4 is involved in, (G) differential expression levels and (H) tissue specificity of CPSF4.
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Figure 4. Performance of PPI prediction methods in HVIDB. (A) Randomly sampling 80% of all human-virus interactions as training data we assessed the performance

of interolog mapping, DDI, and our ML methods as well as their integration through a logistic regression model by using the remaining 20% as testing data. AUPRC

clearly shows that our doc2vec + RF ML approach outperformed other methods. (B) Refining our training dataset by only considering viral proteins that do not appear

in the test data, we corroborate our initial observation. However, we also observe that the integration of all prediction methods through logistic regression offered a

competitive prediction edge.

ZIKV proteins and 20 262 reviewed human proteins as annotated
by SwissProt. Considering all sequence pairs of human-ZIKV
proteins as input, we predicted the potential interactions
through three individual methods and our integrative model.
In particular, we selected the top 2000 predicted human-ZIKV
interactions as high-confidence interactions as they pertain to
a false positive rate <0.01 for follow-up analysis according to
the logistic regression integration score. Notably, we found that
a substantial fraction of 477 non-redundant, experimentally
known human-ZIKV PPIs in HVIDB were confirmed by our
predictions (Figure 5B). We further employed the rich data
resources in HVIDB to analyze the combined set of 2102 human-
ZIKV PPIs (Figure 5C; Supplementary Table S2). The enriched
GO terms for virally targeted human proteins are shown in
Supplementary Table S3, as a function of interactions with any
given ZIKV protein. In general, ZIKV targeted human proteins
are enriched for functions associated with apoptosis, cell
cycle and immune response, which is consistent with known
biological processes associated with ZIKV infections [68–70].
To investigate the human host responses to viral infections, we
extracted RNA-Seq data related to ZIKV infections in HVIDB (GEO
accession number: GSE93385), where the expression samples
were annotated from primary human fetal brain-derived neural
stem cells (cell line G010, K054 and K048), and mapped the
corresponding DEGs to the 2102 human-ZIKV PPIs to obtain 32
up- and 16 down-regulated human genes post infections with
ZIKV (Supplementary Table S4).

Furthermore, HVIDB allows the functional analysis of the
targets of ZIKV non-structural protein NS5, showing that
functions such as ‘mRNA splicing, via spliceosome,’ ‘mRNA
export from nucleus’ and ‘regulation of mRNA stability’ are
significantly enriched (Figure 5D; Supplementary Table S3),
which is in line with nuclear localization of NS5. Previous
observations indicate that NS5 in another flavivirus DENV

inhibits the splicing of host mRNA [69], suggesting that ZIKV
NS5 possibly also inhibits the splicing of host mRNA. Moreover,
NS5 targets the interferon-stimulated gene factor 3 transcription
complex (ISGF3) through an experimentally verified interaction
with STAT2, which is a human host factor. The experimental
verified viral target STAT2 is also identified by our prediction
method (Figure 5E). Notably, we also predicted an interaction
between NS5 and STAT1 in ISGF3. This innate immune-related
protein has been identified as a drug target in TTD (http://db.i
drblab.net/ttd) (Figure 5E) and can serve as a potential drug
target for anti-ZIKV therapeutics. By further considering tran-
scriptional regulation data, we hypothesize that NS5 may target
the complex and results in the up-regulation of all subunits to
inhibit the recruitment of interferon-stimulated gene factors
(Figure 5E).

Comparison of HVIDB to existing human–virus PPI
databases

In recent years, the rapid generation of large-scale human–
virus PPI led to the accumulation of multifaceted data that
revolves around human–virus interactomes. While a plethora of
human–virus PPI databases have been released, we developed
HVIDB as a source to provide comprehensively and thoroughly
annotated human–virus PPI data. To compare HVIDB with other
contemporary databases, we provide brief descriptions of some
representative databases in Table 1. While impressive and prac-
tical in their own right, these contemporary database resources
mainly represent storage platforms for human–virus PPIs, lack-
ing detailed PPI-specific multimodal annotations that are con-
ducive to further investigations of the pathogenesis of viral
infections and specific dynamic mechanism of host immune
responses. In addition, some databases only focus on a special
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Figure 5. Case study of human-ZIKV PPIs. Focusing on the Zika virus, we show ways HVIDB can be employed to analyze the network of interactions between Zika and

human host proteins. (A) HVIDB allowed us to find 2102 experimentally confirmed or predicted PPIs. Utilizing the functional and expression information in HVIDB we

found 237 enriched GO terms and 48 differentially expressed human genes that were targeted by ZIKV. Furthermore, HVIDB allowed us to find viral targets in human

protein complexes and annotate such genes as host factors. (B) The Venn diagram indicates that the prediction methods in HVIDB confirmed a substantial fraction of

experimentally known PPIs. In (C), we show the number of experimentally verified and predicted human-ZIKV PPIs for each ZIKV protein. (D) As HVIDB provides the

functional characterization of targets, we show the top 10 enriched GO–BP terms of NS5 targeted human proteins. (E) Determining a subnetwork of viral protein NS5

and its targeted interferon-stimulated gene factor 3 transcription complex, we used HVIDB to fully annotate the underlying PPIs and targeted proteins.
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virus species, and thus their applications are somehow lim-
ited. Comparatively, our proposed HVIDB focuses on all avail-
able protein interactions between human and any virus species
and provides a large amount of multifaceted auxiliary infor-
mation that is associated with human–virus PPIs. Based on
these multifaceted annotation data, users can easily obtain reli-
able information on human–virus PPIs as well as conduct fur-
ther in-depth functional analysis. Most strikingly, contemporary
databases generally lack online PPI prediction tools, hampering
users to access the complete, putative host-virus interactomes.
To the best of our knowledge, HPIDB [37] provides a simple tool
to predict potential interactions which only allows users to find
homologous host-pathogen PPIs through basic sequence align-
ments. In contrast to the majority of contemporary databases,
HVIDB also integrates an ML model using sequence embedding
technique and two state-of-the-art PPI inference methods (i.e.
interolog mapping and DDI inference method) that allow the
reliable prediction of putative interactions between host and
viral proteins. By considering the above advantages of HVIDB,
we are confident that HVIDB can become a competitive data
resource for human–virus interactomes.

Conclusions
HVIDB is a freely accessible resource providing comprehensive,
downloadable human–virus PPI data to maximize its applica-
tion. In contrast to existing human–virus PPI databases, HVIDB
seamlessly integrates multifaceted data resources for human–
virus PPIs, allowing users to explore the corresponding biological
applications of human–virus interactomes. Furthermore, HVIDB
provides an integrative human–virus PPI prediction platform,
enabling users to accurately predict new interactions between
human and viral proteins of interest. Our case study indicated
the ease HVIDB allowed us to rapidly provide a more compre-
hensive landscape of the human-ZIKV interactome. Regarding
future development, we will upgrade HVIDB regularly through
integrating more data resources, developing better prediction
tools and designing simple and more user-friendly interactive
analysis interfaces. For instance, we will add known drug tar-
gets or drug information of viral targets to HVIDB, potentially
accelerating drug target discovery and drug repositioning to
combat deadly virally induced diseases. Furthermore, our cur-
rent deep learning model to predict host-virus PPIs will serve
as a starting point to develop a more powerful human–virus
PPI prediction platform. Taken together, HVIDB can serve as
a one-stop knowledge base to further guide hypothesis-driven
experimental efforts to understand human–virus relationships
and to develop antiviral treatments to tackle the continuous
challenge of viral infections.

Key points
• HVIDB is a comprehensive web-based human–virus

PPI data resource, providing rich human–virus PPI
annotation data.

• HVIDB allows the users to explore correspond-
ing biological implications of human–virus interac-
tomes, while seamlessly integrating multifaceted data
resources associated with human–virus PPIs.

• HVIDB provides a highly accurate and reliable integra-
tive human–virus PPI prediction platform to predict
new interactions between viral and human proteins.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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