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The identification of human-virus protein-protein interactions (PPIs) is an essential and challenging
research topic, potentially providing a mechanistic understanding of viral infection. Given that the exper-
imental determination of human-virus PPIs is time-consuming and labor-intensive, computational meth-
ods are playing an important role in providing testable hypotheses, complementing the determination of
large-scale interactome between species. In this work, we applied an unsupervised sequence embedding
technique (doc2vec) to represent protein sequences as rich feature vectors of low dimensionality.
Training a Random Forest (RF) classifier through a training dataset that covers known PPIs between
human and all viruses, we obtained excellent predictive accuracy outperforming various combinations
of machine learning algorithms and commonly-used sequence encoding schemes. Rigorous comparison
with three existing human-virus PPI prediction methods, our proposed computational framework further
provided very competitive and promising performance, suggesting that the doc2vec encoding scheme
effectively captures context information of protein sequences, pertaining to corresponding protein-
protein interactions. Our approach is freely accessible through our web server as part of our host-
pathogen PPI prediction platform (http://zzdlab.com/InterSPPI/). Taken together, we hope the current
work not only contributes a useful predictor to accelerate the exploration of human-virus PPIs, but also
provides some meaningful insights into human-virus relationships.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Virus infections still pose a major threat to human health. As of
the World Health Organization (WHO), HIV/AIDS causes the deaths
of one million people in 2016. World-wide dengue fever cases have
continuously increased in recent decades [1], pointing to 50 mil-
lion annual cases that cause 25,000 deaths [2,3]. The investigation
of the human-virus interactome is therefore increasingly impor-
tant, leading to extensive efforts to determine the ways viruses
infect, hijack and utilize host functions to carry out their own life
activities. Within the complex human-virus interaction system,
protein-protein interactions (PPIs) serve as a foundation of cell
communication between human and viruses and play a vital role
for viral infections and host immune responses [4,5]. As a conse-
quence, in-depth exploration of human-virus PPIs is critical for a
thorough understanding of a virus’ pathogenesis, providing an
essential foundation for the development of effective therapeutic
and prevention strategies to combat diseases.
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Experimental techniques for PPI identification have been devel-
oped in the past decades. While PPIs can be determined individu-
ally by using various genetic, biochemical and biophysical
methods, high-throughput experimental techniques such as yeast
two-hybrid (Y2H) and mass spectroscopy (MS) allowed the deter-
mination of PPIs on a large scale [6–8] that have been widely uti-
lized to infer protein functions and understand corresponding
biological processes. However, such high-throughput experimental
screens are mainly applied to identify intraspecies PPIs [9–11],
while interspecies interactomes remained relatively understudied.
Moreover, the experimental determination of PPIs is typically
time-consuming, laborious and hard to obtain complete protein
interactomes. Therefore, efficient computational methods for PPI
prediction can complement experimental techniques by providing
experimentally testable hypothesis and exclude protein pairs with
low interacting probability to limit the range of PPI candidates.

A plethora of computational methods for PPI prediction have
been developed, traditionally utilizing interolog mapping [12,13]
and domain-domain/motif interaction-based inference [14–16].
Apart from sequence information, protein 3D structures [17,18]
and gene co-expression relationships [19] have also been used to
predict PPIs, although protein structures and expression data of
query protein pairs are generally hard to obtain. With the technical
advance of machine learning (ML) and the availability of known
PPIs, ML-based methods have been intensively employed to pre-
dict PPIs. Briefly, ML-based methods train a binary classifier using
known PPIs to distinguish interacting and non-interacting protein
pairs from query samples [20]. Although various heterogeneous
information or evidences as features can be integrated to provide
a predictive framework, most ML-based methods utilize protein
sequence information.

Although mainly focusing on the prediction of intraspecies PPIs
[21–23], ML-driven PPI prediction approaches are increasingly
applied to determine interspecies PPIs [24–26], such as interac-
tions between human and viral proteins [20,27–29]. Encoding pro-
tein sequence information, most schemes account for residue
physicochemical properties of protein sequences, yet ignore the
relationships between amino acid segments as a function of the
context of whole protein sequences. Moreover, nearly all of the
constructed models are designed for certain individual virus spe-
cies, limiting their generalizability to other human host-virus sys-
tems. Currently, tens of thousands of human-virus PPIs have been
experimentally determined, providing an unprecedented abun-
dance of data to develop generalizable ML-based methods to pre-
dict interactions of proteins of human and any virus.

To create a ML model for human-virus PPI prediction, the key
step is to conduct feature encoding which converts human and
viral protein sequences to fixed-dimensional vectors. For PPI pre-
diction, some common sequence encoding schemes such as Con-
joint Triad (CT) [30], Auto Covariance (AC) [31] and Local
Descriptor (LD) [32–35] are widely used, in which residue-
specific physicochemical properties or interaction effects have
been taken into account to some extent. However, there are two
shortcomings for these manually constructed feature vectors.
One is that such methods usually fail to sufficiently consider
semantic information (such as the order of residues) in entire
sequences. The other one is that they ignore potential information
from the large quantity of unlabeled protein sequences while these
information can represent very important properties of proteins.

To capture semantic information of residues in entire sequences
as much as possible, word/document embedding techniques were
recently developed. The word embedding uses vectors to represent
words which are learned from the contexts of words in a given
document. One of the widely used word embedding models is
word2vec which uses a shallow two-layer neural network to learn
word vectors [36]. As an extension of word2vec, doc2vec was
developed to learn document-based embeddings for entire sen-
tences, paragraphs, or documents [37]. Recently, such word/docu-
ment embedding representation approaches have been used to
process biological sequences [38–40]. Here, each protein sequence
can be reviewed as a sentence and broken to multiple overlapping/
non-overlapping residue segments regarded as words (i.e. k-mers)
that were used to train word2vec/doc2vec models. To learn the
semantic information as much as possible, a large protein dataset
(e.g., the UniProt database) was often used. Such learned protein
embeddings can be further used to train various ML classifiers
for biological prediction tasks. In the real applications of protein
classification, note that the advantage of doc2vec over word2vec
has been reported [39]. Therefore, we attempted to introduce
doc2vec into the prediction of human-virus PPIs. To our best
knowledge, the doc2vec embedding technique has not been
reported in the interspecies protein interaction predictions.

Here, we introduce a computational pipeline (Fig. 1) that is
based on a protein sequence embedding-based ML method, allow-
ing us to predict human-virus PPIs. In particular, we consider
human-virus PPIs as positive samples and compile negative PPI
samples to construct a training dataset and an independent test
set. We train a doc2vec model with such training data as well as
a large number of unlabeled protein sequences to learn protein fea-
tures that allow a reliable prediction of human-virus protein inter-
actions, utilizing a Random Forest (RF) approach. Through 5-fold
cross-validation and independent tests, we extensively compare
the results of our prediction framework with other popular
sequence encoding schemes and ML algorithms, suggesting that
our pipeline significantly outperforms other approaches. Moreover,
we also rigorously benchmark our prediction framework against
existing human-virus PPI prediction methods. Finally, our
sequence embedding-based ML method is freely accessible to the
community through an online webserver (http://zzdlab.com/Inter-
SPPI/).
2. Materials and methods

2.1. Data set construction

We downloaded host-pathogen PPI data from the Host-
Pathogen Interaction Database (HPIDB; version 3.0) [41] that con-
tains manually curated host-pathogen interactions and also inte-
grates corresponding molecular interactions from other public
protein interaction databases. To obtain high-quality PPI samples,
we excluded interactions from large-scale MS experiments that
have been experimentally observed only once because the MS
experiments generally identify protein complexes rather than bin-
ary interactions [42]. Further excluding non-physical interactions,
redundant PPIs, and interactions between proteins with less than
30 amino acids, more than 5000 amino acids or non-standard
amino acids, we obtained 22,653 experimentally verified human-
virus PPIs as a positive sample set. Regarding the construction of
negative samples, previous studies have shown that completely
random pairing may introduce sizeable amounts of noise, limiting
the usability of such PPIs as negative samples sets. As an alterna-
tive, the ‘Dissimilarity-Based Negative Sampling’ method [43],
accounts for sequence similarity of viral proteins. For example, if
viral proteins A and B are similar (sequence identity > 0.3) [44]
and A interacts with host protein C, protein pair B-C should not
be considered a potential negative sample. Following these guide-
lines, we randomly selected viral proteins from the positive sample
set and human proteins as of the SwissProt database [45] and sam-
pled human and viral protein pairs as a non-interacting, negative
PPI set that do not occur in potential positive sample sets. Specifi-
cally, the ratio of positive to negative samples was 1:10. Further,
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Fig. 1. Workflow of our computational pipeline to predict human-virus PPIs. In the dataset preparation step, we constructed positive and negative data samples, utilizing
human-virus protein interaction data from HPIDB as well as SwissProt database. Furthermore, we randomly sampled 80% as training data, while remining data was used as an
independent test set. In the feature extraction step, we formed a corpus of sequence information from such protein data to train a doc2vec model, allowing us to extract/infer
protein sequence specific features. Representing 80% of interactions between proteins through such feature embeddings as training data we used Random Forests (RF) to
predict protein interactions using 5-fold cross-validation and independent test sets (remaining 20% of interaction data). In the final step, we compared our doc2vec + RF
model with combinations of different encoding schemes such as the Conjoint Triad (CT), Local Descriptor (LD) and Auto Covariance (AC) and widely used ML methods such as
Support Vector Machine (SVM), Multiple Layer Perceptron (MLP) and Adaptive Boosting (Adaboost).
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we divided our samples into a training set (80%) and an indepen-
dent test set (20%) for model training and performance assessment,
respectively. To reduce sampling bias caused by sample partition,
we randomly constructed 3 different training and independent test
sets.

2.2. Doc2vec model

In the unsupervised doc2vec embedding learning framework,
feature representation of continuous protein sequences is based
on the assumption that a set of protein sequences comprises a
‘document’. In particular, each sequence is considered a sentence
written in a biological language, suggesting that the corresponding
biological function can be semantically interpreted [46]. As for
training data (termed as corpus), we utilized non-redundant pro-
tein sequences with lengths between 30 and 5000 amino acids
from the SwissProt database [45] where CD-HIT was employed to
removing redundancy (sequence identity � 0.5) [44] and
sequences in our positive/negative PPI samples. Considering the
doc2vec model training requests a large size of corpus and previ-
ous studies have suggested that a larger corpus often results in a
better and more robust performance, the sequence identity thresh-
old of 0.5 deems reasonable. After the above filtering steps, we
obtained 291,726 proteins as a corpus for the doc2vec model train-
ing. Following previous works [31,40], we broke such amino acid
sequences into non-overlapping residue segments (k-mers) as bio-
logical words. Then we used these k-mer residue segments (words)
and the complete sequences (sentences) to train the doc2vec



156 X. Yang et al. / Computational and Structural Biotechnology Journal 18 (2020) 153–161
model (Fig. S1). The distributed-memory (DM) model architecture
was adopted to train the doc2vec model, allowing us to represent
each word through context words and the sentence vector. All the
word and sentence vectors were trained by using stochastic gradi-
ent descent (SGD) and backpropagation to update weight parame-
ters iteratively [36]. After training, the output sentence vectors
were used as our protein sequence features.

The doc2vec model training and inference were implemented
using the Python library Gensim [47]. We optimized hyperparam-
eters (e.g., k-mers and the dimensionality of output vectors) using
5-fold cross-validation. In particular, we trained a Random Forest
(RF) classifier on the PPI training data using different lengths of
k-mers, where k was ranging from 2 to 7 and considered different
dimensions of output vectors (number of hidden layer neurons 2
{16, 32, 64, 128, 256}).

2.3. Parameter optimization for ML algorithms

We mainly used RF to train PPI prediction models, an ensemble
learning method where classification trees are constructed using
different bootstrap samples of the data (‘bagging’). In addition, ran-
dom forests change how classification trees are constructed by
splitting each node, using the best among a predictor subset ran-
domly chosen at that node (‘boosting’). While we kept default
parameters, we set the number of trees in the forest (n_estimators)
to 1500 while the criterion of selecting predictor features was set
as ‘entropy’. We also compared corresponding results with three
other popular ML algorithms, including Support Vector Machine
(SVM), Adaptive Boosting (Adaboost) and one of deep learning
architectures named Multiple Layer Perceptron (MLP). These algo-
rithms were implemented by utilizing the Python-based ML library
scikit-learn [48] and deep learning library keras (https://keras.io/),
respectively. For all the ML-based algorithms, parameters were
optimized through the GridSeachCV function, using cross-
validation sets and considering the ‘neg_log_loss’ scoring function
as assessment criterion.

SVM performs classification by mapping low-dimensional
inputs into a high-dimensional feature space through a kernel
function. Here, we chose the radial basis function (RBF) and opti-
mized parameters C, c, ranging between [2�5, 215] and [2�15, 23],
respectively. Due to the computational costs of SVM, we only uti-
lized one fifteenth of the training samples to optimize parameters.
AdaBoost is a meta-algorithm for establishing a strong classifier by
combining the outputs of multiple weak classifiers (decision trees)
into a weighted sum, benefitting cases that were misclassified by
weak classifiers. We optimized the maximum number of trees to
50, while the optimized learning rate was set to 0.01. The deep
learning method MLP is a feedforward neutral network consisting
of an input layer, hidden layers and an output layer. MLP trains the
classifier by supervised backpropagation and utilizes nonlinear
activation functions to distinguish linearly indivisible data. Here,
we used two hidden layers with 128 and 64 neurons, and adopted
‘ReLU’ as the activation function. Moreover, the mini-batch size
and the learning rate was set to 64 and 0.0001, respectively. To
avoid over-fitting, we used dropout layers as regularizers. For the
output layer, the activation function ‘sigmoid’ was utilized to
retrieve normalized probabilities between 0 and 1.

2.4. Other popular sequence-based encoding schemes

2.4.1. Conjoint Triad (CT)
Based on the physicochemical properties of their side chains, 20

amino acids are clustered into seven groups (AGV, DE, FILP, HNQW,
KR, MSTY and C). Replacing each amino acid in a protein sequence
with the corresponding group number, the frequency of each con-
joint triad in the protein sequence is determined through a sliding
window. As a consequence, a protein pair is finally represented by
a 686-dimensional (7 � 7 � 7 � 2) vector [30].

2.4.2. Local Descriptor (LD)
Similar to CT encoding, the seven groups of amino acids are also

used in LD. Briefly, LD divides a protein sequence into ten local
regions to further extract features of each subregion, mainly
reflecting local characteristics of the underlying protein [34]. Each
region is represented by three features that reflect the characteris-
tics of seven amino acid groups. The three features are Composi-
tion (C), Transition (T), and Distribution (D), where C represents
the composition of each amino acid group, T reflects the composi-
tion of any two amino acid groups, and D represents the distribu-
tion of the first, 25%, 50%, 75%, and 100% of the total number of
amino acids. In each region, the corresponding dimensionality for
C, T and D is 7, 21 and 35, respectively. Therefore, the final dimen-
sion of the LD encoding for a protein pair is 1260 [(7 + 21 + 35) �
10 � 2].

2.4.3. Auto Covariance (AC)
AC encoding [31] accounts for correlations and interactions

between variables at different positions, widely applied to coding
protein sequences [49,50]. In this study, we employed seven resi-
due physicochemical properties (Table S1) to represent the protein
feature. AC features of protein sequences can be inferred by

AClag;j ¼ 1
n�lag

Pn�lag

i¼1
ðXij � 1

n XijÞ � ðXðiþlagÞ;j �
Pn

i¼1
XijÞ, where n is the

length of the protein sequence X, lag represents the sequence dis-
tance between residues and Xi;j is the normalized jth physicochem-
ical property value of the ith amino acid. In this way, protein
sequences with variable sequence lengths can be encoded into vec-
tors with a fixed dimension, ðj� lagÞ. As for protein interactions, a
protein pair was represented by concatenating the AC vectors of
two proteins. Here, we set lag to 30, transforming a protein pair
into a 420-dimensional (30 � 7 � 2) vector.

In addition to the singular sequence encodings, we also simul-
taneously considered a combination of above three sequence
encodings by concatenating these schemes to form a 2366-
dimensional (1260 + 686 + 420) vector (LD_CT_AC).

2.5. Performance evaluation

We used both 5-fold cross-validation and an independent test
to compare the performance of different computational frame-
works. To ensure significance of our results, we randomly selected
samples for three times, the final result is the average performance
of the three replicates. Furthermore, the following commonly used
measurements such as Recall (Sensitivity), Specificity, Accuracy
(ACC), Precision, F1-score, Matthews correlation coefficient
(MCC), were utilized to evaluate the performances of the proposed
prediction model. The corresponding formulae are as follows:
Recall ¼ Sensitiv ity ¼ TPR ¼ TP
TP þ FN

;

Specificity ¼ 1� FPR ¼ TN
TN þ FP

;

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

;

Precision ¼ TP
TP þ FP

;

F1 ¼ 2� Precision�Recall
PrecisionþRecall and

https://keras.io/
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MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp

where TP, FP, TN and FN represent the number of true positives,
false positives, true negatives and false negatives, respectively. To
achieve a more intuitive and effective evaluation of the models,
we plotted the Receiver Operating Characteristic (ROC) curve and
considered the area under the curve (AUC). In addition, we consid-
ered the Precision-Recall (PR) curve and the corresponding area
under the PR curve (AUPRC), that is commonly employed to assess
classification performance when the positive and negative samples
are imbalanced [51]. In general, the closer the value of AUC/AUPRC
is to 1, the better the performance of the prediction model is. All
ROC/PR curves were determined with the R package ROCR [52].

3. Results and discussion

3.1. The performance of doc2vec + RF

Here, we introduced a sequence embedding technique called
doc2vec to convert protein sequences into feature vectors, allow-
ing us to construct a RF classifier to predict human-virus PPIs. To
achieve best performance, we optimized the length of k-mers in
doc2vec ranging from 2 to 7 through performance comparison of
the corresponding RF models for PPI prediction. In terms of AUPRC
and AUC, 4-mers and 5-mers provided better performance using 5-
fold cross-validation, and 5-mers yielded the highest AUPRC value
(Table S2). Thus, we employed 5-mers for our final doc2vec model
construction. Moreover, the vector size of the doc2vec features was
also optimized. Specifically, we observed that the dimensionality of
32 can roughly achieve best performance for the prediction of
human-virus PPIs, implying the low dimensionality and high effi-
ciency of the doc2vec encoding.

In general, the combination of doc2vec with 5-mers and vector
size 32 and RF (doc2vec + RF) provided excellent performance as
the corresponding AUPRC values were 0.759 and 0.784 when we
applied 5-fold cross-validation and used independent tests, respec-
tively (Fig. 2). At a recall control of 80%, the corresponding preci-
sion value in the 5-fold cross-validation and independent test
was 54.77% and 58.82%, respectively. The performance results
were corroborated by the corresponding ROC curves in Fig. S2
where doc2vec + RF achieved an AUC = 0.947 for the 5-fold cross-
validation and AUC = 0.954 for the independent test, suggesting
that the embedding technique effectively transferred information
encoded in protein sequences to the task of human-virus PPI
prediction.

3.2. Comparison with the computational frameworks of doc2vec
+ other ML algorithms

To benchmark the performance of doc2vec in the other ML algo-
rithms, we compared RF with widely used ML algorithms (SVM
and Adaboost) and a deep learning method (MLP). For a fair com-
parison, all the ML classifiers were trained on the same dataset
and evaluated on both of the 5-fold cross-validation and indepen-
dent tests. In this work, we assessed the performance mainly
depending on the AUPRC values as the ratio of positive to negative
training sets is highly unbalanced (1:10). Here, we tested the per-
formance of different ML models on the 5-fold cross-validation
(Fig. 2A), we found that RF clearly outperformed SVM
(AUPRC = 0.617; one tailed t-test, p-value = 6.47 � 10�7), MLP
(AUPRC = 0.471; one tailed t-test, p-value = 5.12 � 10�8) and Ada-
boost (AUPRC = 0.147; one tailed t-test, p-value = 4.77 � 10�7).
Similar performance ranks can be observed using the independent
test sets (Fig. 2B; one tailed t-test, p-value = 1.30 � 10�3,
1.74 � 10�5 and 7.47 � 10�9, respectively). Additionally, ROC
curves of each ML classifier using 5-fold cross-validation and inde-
pendent tests in Fig. S2 confirm our initial observations. Collec-
tively, the RF classifier outperformed the other popular ML
algorithms based on the doc2vec encoding.

3.3. Comparison with other popular sequence encoding schemes

To benchmark the performance of the doc2vec encoding, we
trained the RF models based on the other three commonly used
sequence encoding schemes (AC, CT and LD). In general, the
doc2vec-based RF framework outperformed other encoding
schemes using 5-fold cross-validation as well as independent tests
(Fig. 3 and Fig. S3; one tailed t-test, all the p-values < 0.01). Nota-
bly, the concatenation of the three encoding schemes failed to pro-
vide better performance, as results were only comparable to the
individual LD encoding, implying that the incorporation of feature
vectors did not increase the ratio of signal to noise effectively. Alto-
gether, the doc2vec encoding outperformed the other popular
sequence-based encodings based on the RF classifier.

To explore whether doc2vec + RF is an optimal computational
framework, we examined combinations of the other algorithms
(SVM, Adaboost and MLP) with those popular sequence-based
encoding schemes (AC, CT, LD and LD_CT_AC). In Fig. 4, we
observed that the AUPRC of doc2vec + RF was 5.5 and 5.7 percent-
age points higher than that of the second best performing combi-
nation (LD + RF; one tailed t-test, p-value = 3.64 � 10�5 and
1.33 � 10�4), when we considered results obtained with 5-fold
cross-validation and independent sets (corresponding curves are
shown in Figs. S4 and S5). Generally, we observed that combina-
tions of sequence embeddings with RF outperformed other ML
methods, with SVM leading MLP and Adaboost.

3.4. Comparison with existing human-virus PPI prediction methods

To further assess our method, we compared our method with
three existing prediction methods for human-virus PPIs, including
Barman et al.’s method [53], Alguwaizani et al.’s method [54] and
DeNovo [43]. Barman et al.’s method uses three commonMLmeth-
ods including SVM, RF, and Naïve Bayes to predict human-virus
PPIs based on integrative features such as domain-domain associ-
ation, network topology and sequence information. After data pre-
processing, 1035 positive samples from VirusMINT and 1035
negative samples by negative sampling were used to train and test
models through 5-fold cross-validation. As for Alguwaizani et al.’s
work, the authors utilized simple features such as the repeat pat-
terns and composition of amino acids to characterize protein
sequences for human-virus PPI prediction. Then they also used
the SVM algorithm to train their model and compared their model
with Barman et al.’s method on the same data set through 5-fold
cross-validation. To allow a fair comparison, we first used the iden-
tical data set to train our new doc2vec model to infer doc2vec-
based features, and retrained our RF-based model using their sam-
ples based on 5-fold cross-validation. Notably, Table 1 indicates
that our doc2vec-based RF model outperformed Alguwaizani
et al.’s SVM model and Barman et al.’s method in terms of most
of the performance measures.

Regarding the DeNovo method, the authors proposed a domain/
motif-based SVMmethod to predict human-virus PPIs. To compare
with DeNovo, we rebuilt our doc2vec and RF model based on the
dataset used in DeNovo. Then, we assessed the performance of
our reconstructed model on the test set from DeNovo containing
425 positive samples and 425 negative samples. Note that Algu-
waizani et al also compared their model against the DeNovo’s
model based on the datasets of DeNovo, which has also allowed
us to further compare our model with Alguwaizani et al.’s method
and DeNovo simultaneously through the DeNovo test set. As



Fig. 2. Performance of various classifiers in predicting human-virus PPIs based on doc2vec encoding. Areas under the Precision-Recall curves (AUPRC) indicate that Random
Forests (RF) outperformed Support Vector Machine (SVM), Multiple Layer Perceptron (MLP) and Adaptive Boosting (Adaboost) (A) applying 5-fold cross-validation and (B)
using an independent test set.

Fig. 3. Performance of RF classifier in predicting human-virus PPIs based on different sequence-based encoding schemes. Areas under the Precision-Recall curves (AUPRC)
indicate that doc2vec encoding provided best prediction performance compared to a combination of Local Descriptor (LD), Conjoint Triad (CT) and Auto Covariance (AC) as
well as these encoding techniques separately (A) applying 5-fold cross-validation and (B) using an independent test set.
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shown in Table 2, our model outperformed DeNovo and Alguwai-
zani et al.’s method considering all performance metrics on the
DeNovo’s test set.

3.5. Cross-species prediction comparison

To further demonstrate the generalization capabilities of our
models, we also conducted cross-species prediction experiments
between human and viral proteins of three viral species (i.e.,
H1N1, HIV-1 and EBV). Taking H1N1 as an example, cross-
species testing means that we test the prediction performance of
human-H1N1 PPIs using the model in which the known human-
H1N1 PPIs are totally precluded from the training. Among the
22,653 human-virus PPIs, the number of PPIs between human
and H1N1, HIV-1, EBV is 1877, 2215 and 3454, respectively. In
brief, we first trained three predictive models based on the data-
sets excluding the interactions involving the above three viruses
respectively. Then, the human-virus PPIs involved in the three



Fig. 4. Performance of various combinations of ML algorithms and sequence-based encoding schemes in predicting human-virus PPIs. Areas under the Precision-Recall curves
(AUPRC) show that our pipeline that combined doc2vec embedding and Random Forests (RF) outperforms other combinations, (A) applying 5-fold cross-validation and (B)
using an independent test. Considering the computational costs of SVM, note that only half of the whole samples were used to train and assess the SVM classifiers.

Table 1
Performance comparison of our doc2vec + RF model with Alguwzizani et al.’s and Barman et al.’s methods using Barman et al.’s dataset.

Method SN (%) SP (%) ACC (%) PPV (%) NPV (%) MCC AUC F1 (%)

Our model 81.85 76.45 79.17 77.83 80.67 0.584 0.871 79.79
Alguwzizani et al.’s SVMa,b 73.72 83.48 78.60 81.69 76.06 0.575 0.847 77.50
Barman et al.’s SVMa,c,d 67.00 74.00 71.00 72.00 NA 0.440 0.730 69.41
Barman et al.’s RFa,c,d 55.66 89.08 72.41 82.26 NA 0.480 0.760 66.39

a The performance was assessed through 5-fold cross-validation.
b The corresponding values were retrieved from [54].
c The corresponding values were retrieved from [53].
d NA means the corresponding parameter is not available. SN: Sensitivity; SP: Specificity; ACC: Accuracy; PPV: Positive Predictive Value (PPV = Precision); NPV: Negative

Predictive Value (NPV = TN/(TN + FN)); MCC: Matthews Correlation Coefficient; AUC: the area under the ROC curve; F1 = 2 � (Precision � Recall)/(Precision + Recall).
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viruses were utilized as the test sets to assess the predictive power
of each model. To have a robust assessment, we also performed
three repeats by sampling. Although cross-species PPI predictions
showed a considerable decrease in performance, our model still
outperformed other sequence encoding schemes-based ML meth-
ods (Table S3). To explore the reasons for the performance decline,
we examined the BLAST sequence alignments between viral pro-
teins in training sets and test sets. Boxplots of BLAST E-values in
Fig. S6 indicated that H1N1 proteins shared higher sequence simi-
larity with viral proteins in the training set, achieving better per-
formance in predicting human-H1N1 PPIs. Collectively, our
results confirmed a reasonably good generalization ability of the



Table 2
Performance comparison of our doc2vec + RF model with DeNovo and Alguwzizani et al.’s method using the test set of DeNovo.

Method SN (%) SP (%) ACC (%) PPV (%) NPV (%) MCC AUC F1 (%)

Our model 90.33 96.17 93.23 95.99 90.74 0.866 0.981 93.07
Alguwzizani et al.’s SVMa,b 86.35 86.59 86.47 86.56 86.39 0.729 0.926 NA
DeNovob,c 80.71 83.06 81.90 NA NA NA NA NA

a The corresponding values were retrieved from [54].
b NA means the corresponding parameter is not available.
c The corresponding values were retrieved from [43]. SN: Sensitivity, SP: Specificity, ACC: Accuracy, PPV: Positive Predictive Value (PPV = Precision); NPV: Negative

Predictive Value (NPV = TN/(TN + FN)); MCC: Matthews Correlation Coefficient; AUC: the area under the ROC curve; F1 = 2 � (Precision � Recall)/(Precision + Recall).
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proposed method. However, prediction accuracy will be inevitably
decreased when the query viral protein is not in the training set or
has a low similarity with viral proteins in the training set.
3.6. Webserver implementation

To facilitate the research community, we also built a webserver
that provides access to the proposed doc2vec-based RF method,
which is freely available at our host-pathogen PPI prediction plat-
form (http://zzdlab.com/InterSPPI/). The prediction model was
built based on an unbalanced human host-virus PPI dataset with
positive-to-negative ratio 1:10 and trained with the whole training
set. The webserver was implemented with CentOS 7.4 and Apache
2.4.6. Users can submit human-virus protein sequence pairs in
FASTA format. The webserver will automatically calculate the
interaction probability of the query protein pair. Three thresholds
to determine whether two proteins interact are provided, which
correspond to specificity controls at 99%, 95% and 90%, respec-
tively. Note that the proposed method was optimally designed to
process proteins with sequence lengths more than 30 amino acids
and less than 5000 amino acids. As we know, human small proteins
also perform important functional roles in many biological pro-
cesses [55], and thus the prediciton issue of small proteins inter-
acting viral proteins should be taken into account in our future
work.
4. Conclusions

In this work, we developed a doc2vec embedding-based RF clas-
sifier in predicting human-virus PPIs. We observed that our com-
putational framework significantly outperformed computational
framework combinations of other widely used ML algorithms
and commonly-used sequence encoding schemes. Stringent bench-
marking experiments further showed that the proposed method
was fully comparable to and often outperformed those existing
state-of-the-art human-virus PPI prediction methods. Our results
demonstrate that the representation of proteins through feature
embedding can allow us to capture more context information from
protein sequences, significantly improving prediction perfor-
mance. We anticipate that our work can provide a useful tool to
identify potential interactions between human and viral proteins,
further guiding hypothesis-driven experimental efforts to deter-
mine proteins involved in human-virus interactions and interro-
gating the associated functional roles.

As for future developments, the application of deep learning
methods has been booming in the past several years, prompting
researchers to design deep learning architectures to predict intras-
pecies PPIs [30,56,57]. Furthermore, other features such as protein
structural information and host PPI network topology also play an
increasingly important role for the prediction of host-pathogen
PPIs [25,58]. By fully accounting for these technical advances, more
powerful computational frameworks will be developed to propel
human-virus PPI prediction to the next level.
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