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Abstract High-throughput transcriptomics technologies have been widely used to study plant tran-

scriptional reprogramming during the process of plant defense responses, and a large quantity of

gene expression data have been accumulated in public repositories. However, utilization of these

data is often hampered by the lack of standard metadata annotation. In this study, we curated

2444 public pathogenesis-related gene expression samples from the model plant Arabidopsis and

three major crops (maize, rice, and wheat). We organized the data into a user-friendly database ter-

med as PlaD. Currently, PlaD contains three key features. First, it provides large-scale curated data

related to plant defense responses, including gene expression and gene functional annotation data.

Second, it provides the visualization of condition-specific expression profiles. Third, it allows users

to search co-regulated genes under the infections of various pathogens. Using PlaD, we conducted a

large-scale transcriptome analysis to explore the global landscape of gene expression in the curated

data. We found that only a small fraction of genes were differentially expressed under multiple
nces and
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conditions, which might be explained by their tendency of having more network connections and

shorter network distances in gene networks. Collectively, we hope that PlaD can serve as an impor-

tant and comprehensive knowledgebase to the community of plant sciences, providing insightful

clues to better understand the molecular mechanisms underlying plant immune responses. PlaD

is freely available at http://systbio.cau.edu.cn/plad/index.php or http://zzdlab.com/plad/index.php.
Introduction

Plant diseases caused by pathogens seriously affect food secu-
rity and might even threaten human health. Fundamental
research on the molecular mechanisms of plant immune system
plays important roles in continuously improving our knowl-

edge on plant resistance to various pathogens. During the
infection of pathogens, plants trigger pattern-triggered immu-
nity (PTI) and effector-triggered immunity (ETI), including a

number of immune responses such as hypersensitive response,
reduction in reactive oxygen species, as well as activation of
mitogen-activated protein kinase (MAPK) cascades or

calcium-dependent protein kinases and hormonal modulation
[1]. A lot of studies have been devoted to investigating the tran-
scriptional reprogramming related to plant immunity using

high-throughput technologies. As a result, public databases
such as NCBI Gene Expression Omnibus (GEO) [2] host thou-
sands of expression samples related to plant immune processes.

Transcriptome data bring great opportunities and chal-

lenges to explore the molecular mechanisms of plant immunity.
So far, many methods have been developed to analyze tran-
scriptome data, such as differential expression analysis [3–5],

gene co-expression analysis [6], and gene differential co-
expression analysis [7]. Moreover, the integration of transcrip-
tome data with biological networks often leads to new biolog-

ical findings [8,9]. For instance, Dong et al. employed a
machine learning method to integrate transcriptional data with
gene networks to study PTI and ETI in the context of network
biology [10]. Jiang et al. integrated transcriptional data and

protein–protein interaction (PPI) network to compare plant
defense responses to pathogens with different lifestyles [11].
In general, gene differential expression analysis remains the

most popular and direct approach to process transcriptome
data related to plant defense responses [12–15], and the detec-
tion of differentially expressed genes (DEGs) has become an

effective way to screen plant immunity-related candidate genes.
Existing gene expression databases have played important

roles in accelerating the study of gene functions. GEO and

ArrayExpress [16] are probably the two main repositories of
high-throughput gene expression data. Additional resources
or tools have also been further developed to facilitate the
expression data analysis. For instance, Expression Atlas [17]

provides gene expression analysis across multiple species and
biological conditions. GEO2R is a web application of GEO
helping users to identify and visualize DEGs. However, to

use GEO2R, users have to manually divide samples into sev-
eral groups and convert probe IDs of some platforms to gene
IDs, which is not user-friendly for non-experts. Co-expression

analysis of genes has been effective in providing in-depth func-
tional hypotheses of genes [18–20]. To take full advantage of
the currently available expression data, several specialized

co-expression databases have also been developed, such as
COEXPEDIA [21] and GEM2Net [22]. COEXPEDIA is a
co-expression database for humans and mice, with the core
idea of inferring co-expression relationships from individual
studies, whereas GEM2Net focuses on the co-expression of

genes involved in response to biotic and abiotic stresses in
Arabidopsis.

Despite the availability of the aforementioned resources,
utilization of a large amount of public expression data is not

a trivial task. On the one hand, the expression abundance val-
ues may not be directly comparable across different studies due
to the different experimental designs. On the other hand, pub-

lic expression data are not annotated using standard ontology,
making automatic parsing process not straightforward [23,24].
In this context, development of specialized transcriptomics

databases is still highly required.
Several transcriptomics databases have also been reported

for plant immune response. For instance, PathoPlant [25] is

a transcriptomics database for analyzing co-regulated genes
in plant defense responses. Unfortunately, PathoPlant only
contains a small number of expression data of Arabidopsis,
thus limiting its application in the plant community. ExPath

[26,27] is also a plant transcriptomics database, which collects
more than 1000 samples in biotic stress, abiotic stress, and hor-
mone secretion. It also provides diverse analyses including co-

expression analysis, DEG identification, and enrichment anal-
ysis of pathways. However, the pathogenesis-related expres-
sion data in ExPath is generally not sufficient. It is worth

mentioning that although microarray technique might be
replaced by direct mRNA sequencing in the foreseeable future,
the current pathogenesis-related transcriptome data generated

using the microarray technique still hold great value for poten-
tial biological discoveries. Therefore, integration of these data
for further exploration remains an important task.

In this work, we constructed a user-friendly knowledgebase

called PlaD, which contains 2444 curated pathogenesis-related
transcriptome samples from 94 GEO series for four plant spe-
cies, including Arabidopsis, maize, rice, and wheat. Firstly, we

quantified the fold change (FC) of gene expression within each
study, making data comparable across studies or species. We

provided the visualization of the corresponding expression

profiles for the condition-specific DEGs. Subsequently, we
seamlessly integrated functional annotations of each DEG into
PlaD, such as orthologous genes, co-expressed genes, protein
interactions, transcriptional regulations, pathways, and pro-

tein domains. Finally, a personalized and advanced tool was
provided to allow users to search co-regulated genes. To fur-
ther explore the global gene expression patterns of the curated

data, we performed a large-scale transcriptional analysis. We
show that only a small fraction of genes are differentially
expressed under multiple conditions, revealing their frequent

responsiveness to pathogen attacks. Functional analyses of
those genes indicate their important roles in plant immunity.
Interestingly, it seems that their frequent responsiveness to

pathogen attacks might be explained by their tendency of hav-
ing more network connections and shorter network distances
in gene networks.

http://systbio.cau.edu.cn/plad/index.php
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Methods

Data collection and classification

Microarray dataset collection and classification

Pathogenesis-related microarray expression datasets of Ara-
bidopsis, maize, rice, and wheat were collected from GEO.
In total, we obtained a microarray dataset consisting of 94 ser-
ies and 2444 samples from four plant species (Arabidopsis,

maize, rice, and wheat). These series were then classified based
on plant tissues and pathogen types.

Gene ID conversion

The gene probes of Arabidopsis, rice, and maize were con-
verted into TAIR [28], RAP-DB [29], and MaizeGDB [30] gene
locus IDs, respectively. If multiple probe sets were mapped to

the same gene, the corresponding gene ID was assigned to the
probe with the largest expression variance. Finally, the gene
IDs of 33,309 Arabidopsis genes, 29,695 rice genes, and

13,280 maize genes were mapped. For wheat, we downloaded
cDNA sequences from Ensembl Plants (http://plants.ensembl.
org/Triticum_aestivum/Info/Index; release 32) and used Blastn

[31] to map probes to genes [32]. According to the strict thresh-
olds with E-value <1E�05, sequence identity >0.97, and glo-
bal coverage >0.98, 7782 probes were mapped to 6535 wheat

genes.

Differential expression analysis

To identify condition-specific DEGs, we grouped expression

samples within series according to plant ecotypes, genotypes,
and infection status by pathogens. DEGs were calculated for
each comparative condition within the same series. After nor-

malization and log2 transformation of expression values,
DEGs were inferred through the R package ‘‘limma” [33] with
absolute log2FC �1.5 and false discovery rate (FDR)-adjusted

P value <0.05.

Co-expression network construction

The construction of condition-specific co-expression networks
was based on individual series rather than the combined
expression data from multiple series. If more than one patho-
gen were involved in one series, co-expression networks were

inferred for each pathogen. Only series containing at least 12
samples were taken into account. For each series, we calcu-
lated the adjacency value between any two genes using the

signed WGCNA co-expression measure [34]. Then, the top
0.1% pairs ranked according to the adjacency values were
selected as co-expressed gene pairs. For each gene with �5

co-expressed genes, gene ontology (GO) enrichment analysis
was further performed for the co-expressed genes.

Gene information collection and functional annotation

Genes detected by microarray analysis were annotated and dis-
played on our website. Gene information collection procedures
and functional annotation methods of Arabidopsis, rice,

wheat, and maize are detailed as follows:
Arabidopsis and rice genes

(i) Gene short descriptions, GO annotations, as well as protein

sequences of Arabidopsis and rice were downloaded from
TAIR and RAP-DB, respectively. (ii) Transcriptional regula-
tory interactions of Arabidopsis genes were retrieved from

ATRM [35], AGRIS [36], and AthaMap [37]. (iii) Metabolic
pathways were obtained from AraCyc [38] and OryzaCyc in
Plant Metabolic Network [39]. The annotation of Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways [40] was
also collected. (iv) The PPI data of Arabidopsis was collected
from BioGRID [41], IntAct [42], and TAIR. (v) The domains
of protein sequences were assigned using InterProscan search-

ing [43] against Pfam [44] and SMART [45]. (vi) The corre-
sponding co-expression subnetwork for each gene was
constructed using the signed WGCNA. (vii) The conditions

under which the gene was differentially expressed were summa-
rized for each gene. The associated conditions were categorized
into different classes according to pathogen types.

Wheat genes

The protein sequences were downloaded from Ensembl Plants.
The gene short descriptions and GO annotations were down-

loaded from Ensembl Plant Biomart [46]. The annotations of
protein domain and differential expression condition were con-
ducted using the same methods as for Arabidopsis.

Maize genes

(i) Protein sequences were downloaded from MaizeGDB. (ii)
Gene brief descriptions, GO annotations, and metabolic path-

ways were downloaded from Gramene [47]. The annotations
of protein domains, co-expression networks, and differential
expression condition were conducted using the same methods

as for Arabidopsis.
The stand-alone InParanoid program [48] was used to find

orthologous genes between any two species of the four plants
examined, and the orthologous gene information was also pro-

vided in PlaD.

Definition of consistency_score

When calculating the frequency of differential expression
under multiple conditions, we only focused on the impacts of
pathogens on plants, that is, the expression change of one gene

caused by plant ecotype or genotype is not considered. Genes
differentially expressed under at least 10 conditions are defined
as frequently DEGs (freq_DEGs). Limited by the number of

conditions, we only identified the freq_DEGs of Arabidopsis
and rice. Consistency_score was defined as a benchmark for
each freq_DEG:

consistency score ¼ Numup �Numdown

Numup þ Numdown

where Numup is the number of conditions leading to up-

regulated expression of a DEG, and Numdown is the number
of conditions for the down-regulated expression of a DEG.
Based on the calculated consistency_scores, freq_DEGs can

be further divided into different groups. The gene is defined
as consistently up with consistency_score �0.7, whereas a gene
is defined as consistently down with consistency_score ��0.7.

http://plants.ensembl.org/Triticum_aestivum/Info/Index
http://plants.ensembl.org/Triticum_aestivum/Info/Index
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In this study, we mainly focus on the consistently up and con-

sistently down types of freq_DEGs.

Database construction

The website construction of PlaD was based on CentOS 6.2,
Apache 2.2.15, MySQL 5.6.21, and PHP 5.5.19. D3.js is a
JavaScript library for manipulating documents and visualizing
data. Highcharts.js is a JavaScript library, providing a conve-

nient way to add interactive charts. The visualization of heat-
maps and pie charts is implemented in D3.js, and line charts
are implemented in highcharts.js. Cytoscape.js [49] is a graph

library for visualization, which is used to display co-
expression networks in this work.

Pathway enrichment analysis

The pathway data were downloaded from KEGG. Using all
mapped genes as a reference set, over-represented pathways

were identified by hypergeometric test, with P values adjusted
using the Benjamini–Hochberg correction [50].

Statistical analysis for transcription factors regulating freq_DEGs

Experimental regulatory interactions were collected from
AGRIS [36], ATRM [35], and PlantRegMap [51]. After filter-
ing redundant interactions, we obtained 32,711 regulatory

interactions.
According to the core idea of the in silico regulatory inter-

action, the regulatory relationship between the known tran-

scription factor (TF) and the gene is established if a gene
contains one known regulatory motif. 619 known regulatory
motifs corresponding to 619 Arabidopsis TFs were down-

loaded from PlantTFDB [51]. Each motif was scanned in the
region 1 kb upstream of any Arabidopsis gene using FIMO
[52] with default parameters. Finally, we obtained 4,702,150
motif-based regulatory interactions and 615 TFs with >5 tar-

gets in Arabidopsis.
For the experimentally identified or predicted regulatory

interactions between TFs and Arabidopsis genes, hypergeo-

metric test was employed to judge if a TF significantly regulate
up- or down-regulated freq_DEGs, with P values adjusted
using the Benjamini–Hochberg correction.
Calculation of topological parameters in networks

The node degree of each gene and average distance between
two genes in networks were measured using the ‘‘igraph” pack-

age in R.

Results and discussion

A manually curated atlas of gene expression for plant–pathogen

interaction

The flow chart of our work is shown in Figure 1. We collected

2444 public expression samples from 94 plant pathology-
related GEO series, covering four plant species (i.e., Arabidop-
sis, maize, rice, and wheat) (Tables S1 and S2). All the statistics
of PlaD are provided in Figure 2. The corresponding sample
size of these four species is 1081, 549, 707, and 107, respectively
(Figure 2A). Based on pathogen types and the infected plant

tissues, these samples were manually classified into five and
thirteen categories, respectively (Figure S1). Each subset repre-
sents a group of samples collected from the same tissue and

infected by the same pathogen, and two subsets within the
same series constitute a comparative condition, such as
‘‘pathogen versus normal”, ‘‘one pathogen versus another

pathogen” and ‘‘one genotype versus another genotype”.
Then, DEGs were calculated for 522 conditions, 366 of which
were ‘‘pathogen versus normal” (Figure 2B). DEGs identified
from ‘‘pathogen versus normal” conditions were considered

as pathogen-responsive genes for further analyses. Finally,
all of the data were organized into a user-friendly knowledge-
base called PlaD.

Main interfaces and usages of the database

Currently, PlaD is mainly composed of three components, and

the corresponding web interfaces and usages are elaborated as
follows.

The first and foremost component of PlaD is the presenta-

tion of expression profiles (Figure 3A), in which condition-
specific DEGs and the corresponding changes in expression
level are provided. First, users can select a GSE series via a
user-friendly web interface. Here two selection options are

offered: by classification and by search. If users select series
by classification, two options (pathogen types or infected plant
tissues) are further implemented. Once the series is selected, the

detailed information of the series will be shown on the upper
right of the web page. Second, users should select one condi-
tion of their interest. After the selection, the expression profile

visualization of DEGs will be shown on the lower right of the
page. We offer various ways to show the expression profile,
such as selective display of DEGs and different gene order,

and also provide the download function of DEGs. The expres-
sion profile mainly consists of sample names, sample classifica-
tion, DEG names, expression value, log2FC, and adjusted P
value. While sample names have external links to GEO, the

DEG names are linked to the corresponding gene information
pages as described in the following paragraph.

The second component of PlaD is to provide detailed func-

tional information of DEGs. To provide in-depth functional
annotation, heterogeneous plant functional data, such as co-
expression networks, protein interactomes, transcription regu-

lations, and metabolic pathways are incorporated into this
component. Here we only focus on describing the visualization
of DEGs and the corresponding co-expression networks. Since
the up-regulated and down-regulated genes may be involved in

different biological processes or play different roles in plant
immunity, we add a visualization module to show the differen-
tially expressed conditions of a gene. The module includes two

panels: one demonstrates the number of differentially
expressed conditions in different pathogen types, and the other
one provides detailed information, such as related series, treat-

ment and log2FC, as well as adjusted P value (Figure 3B). For
each DEG, its associated co-expression network is also pro-
vided, and a color scheme based on the consistency_scores of

genes is used in the network representation. More importantly,
GO enrichment analysis was conducted for co-expressed genes



Figure 1 The flow diagram for constructing the PlaD database

Pathogenesis-related microarray data of Arabidopsis, maize, rice, and wheat were collected from GEO, and series matrix files with pre-

processed format were downloaded. To identify DEGs, samples of each series were classified into several subsets based on infection stages,

genotypes, and tissues of plants. The ‘‘limma”package was used to detectDEGs for subset pairs on a log2 scale of gene expression.Note that a

subset pair, also defined as a condition, should be from the same series. GEO,Gene ExpressionOmnibus; DEG, differentially expressed gene.

Figure 2 Data statistics of PlaD

A. The number of expression samples for each species covered in PlaD. B. The number of differential expression conditions for each species

covered in PlaD. Pathogens here represents the ‘‘pathogen versus normal” condition, whereas others refer to ‘‘pathogen versus pathogen”

and ‘‘genotype versus genotype” conditions. C. The distribution of differential expression conditions for each species covered in PlaD.
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of the query DEG. The enriched GO terms are shown on the
right side of the web page. Based on the strategy of ‘‘guilt-b

y-association” [53], the co-expression network may provide
some important hints to the potential functions of the query
DEG at a systems level.

The third component of PlaD is a personalized and
advanced tool that allows users to search genes co-regulated
by related stimuli (Figure 3C). After users submit their query,

genes that are differentially expressed in at least one condition
will be shown. The resultant terms contain related genes, the
number of differentially expressed conditions, short descrip-
tions, and links. By default, the result is sorted according to

the number of differentially expressed conditions, although it
can also be sorted according to gene name or short description.
Users can further search the result through keywords. In addi-

tion, users can click the provided local or external links for fur-
ther exploration.

It is of note that currently only the microarray expression

data are collected in PlaD. With the accumulation of RNA-
seq data, PlaD will be updated to incorporate plant



Figure 3 Three main interfaces of PlaD

A. Condition-specific gene expression profiles. B. The visualization module of the differentially expressed conditions. C. Advanced search

for genes co-regulated by various pathogens.
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immunity-related RNA-seq data in the future. Thus, PlaD will
definitely include more plant species in the future. Since PlaD
relies on publicly available data, it inevitably has limitations

such as the imbalance of the integrated data in different plant
species. For instance, PlaD only provides the PPI information
of Arabidopsis due to the insufficiency of experimentally deter-

mined PPIs in the other three species included.

A case study of PlaD application

To illustrate the application of PlaD, we use the Arabidopsis

gene AT1G56060 as an example. AT1G56060 encodes a
cysteine-rich/transmembrane protein, which is differentially
expressed under 68 conditions and shows consistently up-

regulated expression after infection. The expression data sug-
gest that AT1G56060 might play an important role in plant
immune system. However, the current functional annotation

of AT1G56060 is deficient. PlaD also provides its co-
expression sub-networks and enriched GO terms based on its
local network. We take the co-expression sub-network of

AT1G56060 under the infection of Golovinomyces cichora-
cearum as an example. As shown in Figure S2, AT1G56060
is co-expressed with 14 genes, 11 of which are consistently
up-regulated. There are 42 enriched GO terms in the ‘‘Biolog-
ical Process” category. Some enriched GO terms are related to
plant defense responses, such as ‘‘respiratory burst involved in
defense response”, ‘‘defense response signaling pathway, resis-

tance gene-independent”, ‘‘response to salicylic acid”, and
‘response to fungus”. By performing GO enrichment analysis
of the co-expressed genes, potential functions of the query gene

can be inferred, which provides important functional hypothe-
ses for further experimental validation. Very recently, the func-
tional role of AT1G56060 in response to abiotic stress has been
reported [54], and we expect its role in response to pathogen

infection to be deciphered in the future. In summary, PlaD
can be used to discover candidate genes for plant disease resis-
tance, and to predict potential functions of genes.

Pathogens trigger large-scale expression changes in plant genes

To demonstrate the biological significance of PlaD, we con-

ducted large-scale transcriptome analyses of the curated data
collected in PlaD. We are firstly interested in knowing how
many genes may be differentially expressed in response to

pathogen attacks (focused on the Arabidopsis data in most of
the following analyses, if not specified). We found that approx-
imately 58% (19,366 out of 33,309) of all Arabidopsis genes on
the microarray platform was differentially expressed under at
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least one condition, indicating the complexity of the plant
immune gene networks. Although only a handful of core genes
are involved in the plant immune process [55,56], the gene net-

works might be complicated enough considering that all genes
expressed in the relevant cells can affect each other [57].

The results further show that only a small fraction of genes

are differentially expressed under multiple conditions.
Nonetheless, the fraction was much higher than randomly
expected (Figure S3). For instance, 327 genes were simultane-

ously detected as DEGs under more than 50 conditions
(approximately 30% of ‘‘pathogen versus normal” conditions
in Arabidopsis). The number of genes was significantly higher
than that produced by 1000 simulation experiments with ran-

domly selected DEGs (empirical P < 0.001). Interestingly,
we noticed an approximate power-law distribution of the con-
dition numbers for DEGs (R2 = 0.91, Figure 2C), possibly

reflecting an underlying core network of plant immune process
[58]. According to the definition of freq_DEGs, we identified
4762 freq_DEGs in Arabidopsis, which may play important

roles in plant–pathogen interaction.

Freq_DEGs are enriched in plant–pathogen interaction pathways

Among the 4672 freq_DEGs in Arabidopsis, expression of 2062
freq_DEGs was consistently up-regulated (consistency_score
�0.7) under pathogen attacks, whereas expression of 1734
freq_DEGs was consistently down-regulated (consis-

tency_score ��0.7). To investigate the functions of freq_
DEGs, we performed the KEGG pathway enrichment
analysis for the consistently up-regulated and down-regulated

genes, respectively. The top 10 enriched pathways are shown
in Figure 4A (up-regulated genes) and B (down-regulated
genes), and the full list of the enriched pathways is provided

in Table S3 (up-regulated genes) and S4 (down-regulated
genes), respectively. ‘‘Plant–pathogen interaction” is the most
enriched pathway for the up-regulated freq_DEGs (ath04626,

adjusted P = 2.03E�21), containing 52 up-regulated genes
(Figure 4C). The R package Pathview [59] was used to map
gene consistency_scores to KEGG pathways. EF-TU receptor
(EFR) is involved in PTI and is detected as a consistently up-

regulated gene in this pathway. As an important kinase in
plant–pathogen interaction, the activation of EFR could trig-
ger another up-regulated pathway (i.e., ath04016: MAPK sig-

naling pathway, adjusted P = 5.99E�10) to further induce
the expression of defense-related genes, such as the genes
encoding WRKY29 (consistency_score = 0.93) and PR1 (con-

sistency_score = 0.85). ‘‘Phenylpropanoid biosynthesis” is
another significantly up-regulated pathway (ath00940, adjusted
P = 7.36E�12), which is an important pathway in plant
immune system. It has been known that phenylpropanoids

are precursors to lignin, flavonoids, and stilbenes, and partici-
pate in the formation of secondary resistance metabolites
[60]. These compounds play important roles in plant defense

responses. Pathway ‘‘phenylalanine, tyrosine and tryptophan
biosynthesis” was also detected as an up-regulated pathway
in this study (ath00400, adjusted P = 1.48E�08), which is in

line with the importance of amino acid metabolism in plant
immune responses. These results clearly indicate the important
roles of the up-regulated freq_DEGs in the regulation of plant

immunity, including the perception of pathogens, activation of
the MAPK pathway, and biosynthesis of defense-related prod-
ucts. Meanwhile, we found that down-regulated freq_DEGs
were related to metabolisms that affect the growth and develop-
ment of plants. The most significantly down-regulated pathway
is ‘‘photosynthesis” (ath00195, adjusted P = 1.92E�21), which

is consistent with our previous study [61].
Similar result was obtained in rice. For instance, it was

found that up-regulated freq_DEGs were enriched in ‘‘Phenyl-

propanoid biosynthesis” (dosa00940, adjusted
P = 3.33E�07), ‘‘Phenylalanine, tyrosine and tryptophan
biosynthesis” (dosa00400, adjusted P = 4.23E�04), ‘‘MAPK

signaling pathway” (dosa04016, adjusted P = 7.12E�03),
and ‘‘Plant–pathogen interaction” (dosa04626, adjusted
P = 4.62E�02), whereas down-regulated freq_DEGs were
enriched in ‘‘Photosynthesis” (dosa0195, adjusted

P = 7.74E�06) (Figure S4, Tables S5 and S6).

Freq_DEGs might be regulated by major TFs

We used the known experimental regulatory data to assign
TFs regulating freq_DEGs. We found that 53 TFs significantly
regulated the expression of the up-regulated freq_DEGs

(hypergeometric test, P < 0.01), whereas 33 TFs significantly
regulated freq_DEGs with down-regulated expression pattern
(hypergeometric test, P < 0.01). We compared these 53 TFs

with known defense-related TFs collected by Tsuda and Soms-
sich [62], and found that those TFs were significantly enriched
in defense-related TFs (hypergeometric test, P = 1.14E�03).

Considering that experimentally validated regulatory rela-

tionships between TFs and their targets are limited, especially
in plants, we conducted in silico regulatory motif prediction
among the promoter regions of the freq_DEGs. Then, we cal-

culated enriched motifs for the up-regulated and down-
regulated freq_DEGs of Arabidopsis. Consequently, we found
enriched motifs that correspond to 265 and 132 TFs for the up-

regulated and down-regulated freq_DEG, respectively (Tables
S7 and S8). The overlap of TFs identified by the experimental
approach (Tables S9 and S10) and in silico analysis is also sig-

nificantly high (hypergeometric test, P = 3.34E�03 for TFs
identified from up-regulated genes, and P = 2.57E�03 for
TFs identified from down-regulated genes), suggesting the reli-
ability of the in silico TF identification. Comparatively, the in

silico method identified more regulatory relationships between
TFs and freq_DEGs, which may provide important clues to
facilitate the construction of the regulatory network related

to plant immunity. Not surprisingly, defense-related TFs were
enriched in 265 TFs that regulate the expression of up-
regulated genes (P = 2.99E�04). The WRKY TF family con-

sists of 72 proteins in Arabidopsis [51], and previous studies
have already proposed that WRKY TFs regulate gene expres-
sion in plant defense responses [55]. In this study, all of the 43
WRKY TFs which have more than five targets were identified

to regulate the expression of the up-regulated freq_DEGs,
demonstrating the important role of WRKY TFs in plant
immunity. Similarly, we identified 22 TFs that regulated the

expression of up-regulated genes in rice through in silico pre-
diction, 21 of which belong to the WRKY TF family.

Freq_DEGs tend to have specific network properties in gene

networks

To further explain why freq_DEGs tend to be frequently dif-

ferentially expressed under different pathogen conditions, we



Figure 4 Enriched KEGG pathways for Arabidopsis

A. Top 10 enriched KEGG pathways of 2062 consistently up-regulated freq_DEGs in Arabidopsis under pathogen attacks

(consistency_score � 0.7). B. Top 10 enriched KEGG pathways of the 1734 consistently down-regulated freq_DEGs in Arabidopsis

under pathogen attacks (consistency_score ��0.7). C. Visualization of the pathway of plant–pathogen interaction. Consistency_scores of

freq_DEGs were mapped to the corresponding pathway genes using Pathview. The median value of a node (gene/protein/enzyme or

compound) is used if multiple genes were mapped to the same node.
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analyzed their network topologies in the context of gene net-
works, including one PPI network and two gene co-

functional networks. The Arabidopsis PPI data were down-
loaded from TAIR [28], IntAct [42], and BioGRID [41]. As
a result, we obtained a PPI network covering 38,506 non-

redundant PPIs. We found that freq_DEGs tended to have
higher network degree compared with other genes in the PPI
network (Wilcoxon’s rank sum test, P = 8.55E�03), indicat-
ing that proteins encoded by the freq_DEGs would have a

higher chance to be hub proteins and thus play crucial
functional roles in the PPI network (Figure 5A). We further
examined the network degree of freq_DEGs in two gene

co-functional networks using the ‘gold standard’ data
downloaded from AraNet v2 [63] and RiceNet v2 [64], which



Figure 5 Network topological analysis of freq_DEGs

Boxplots show the degree difference of freq_DEGs and other genes in the PPI network (A), AraNet (B), and RiceNet (C), respectively. The

average distance between freq_DEGs is compared with the average distance between other genes in the PPI network (D), AraNet (E), and

RiceNet (F), respectively. The black line in the box indicates the median. The upper and lower edges of the box are the first and third

quartiles, respectively.
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contain co-functional gene pairs for Arabidopsis and rice,
respectively. By comparing network degrees between freq_

DEGs and other genes in the whole network, we observed
higher degrees for freq_DEGs both in Arabidopsis
(P = 8.49E�03; Figure 5B) and rice (P = 1.34E�06;

Figure 5C).
To further investigate the network properties of freq_

DEGs, we examined the network distances between

freq_DEGs. We found that the average distance between
freq_DEGs were significantly shorter than other genes in the
Arabidopsis PPI network (Wilcoxon’s rank sum test,
P < 2.20E�16, Figure 5D). Similarly, freq_DEGs were also

significantly closer to each other than other genes in two co-
functional networks (P = 6.75E�14; Figure 5E) for Ara-
bidopsis and rice (P = 6.66E�09, Figure 5F), respectively.

Such network property could allow freq_DEGs to quickly
communicate with each other and thus to achieve effective
responses against pathogen attacks, which is in line with our

previous analysis on plant immune networks [10,65]. Collec-
tively, the network topology analyses suggest that freq_DEGs
are likely to be involved in more network interactions and to
have shorter network distance, partially explaining their fre-

quently differential expression under pathogen attacks.
Conclusions

Deciphering plant immune response mechanisms is an impor-
tant research topic in plant sciences. Although a large amount
of pathogenesis-related transcriptome data have been released

in the past decades, it is still difficult to access these data from
public repositories quickly and accurately. In this context, we
took initiative to construct PlaD, a comprehensive transcrip-

tomics database. In the meantime, we also conducted explora-
tory analysis based on the curated transcriptome data in PlaD.
Compared with existing similar databases such as PathoPlant

and ExPath, PlaD collected and curated more plant
pathology-related transcriptomics data. Moreover, we would
like to emphasize two key features of PlaD to support cus-

tomized data mining and in-depth functional annotation.
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First, it allows users to search co-regulated genes and the cor-
responding gene activities under the infections of various
pathogens. Second, diverse plant functional data, such as co-

expression networks, protein interactomes, transcriptional reg-
ulations, and metabolic pathways, are also seamlessly inte-
grated into PlaD. Taken together, we hope that PlaD can

serve as a user-friendly database to facilitate plant immunity
research.
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[48] Sonnhammer ELL, Östlund G. InParanoid 8: orthology analysis

between 273 proteomes, mostly eukaryotic. Nucleic Acids Res

2015;43:D234–9.

[49] Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD.

Cytoscape.js: a graph theory library for visualisation and analysis.

Bioinformatics 2016;32:309–11.

[50] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J R Stat Soc

B 1995;57:289–300.

[51] Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, et al.

PlantTFDB 4.0: toward a central hub for transcription factors

and regulatory interactions in plants. Nucleic Acids Res 2017;45:

D1040–5.

[52] Grant CE, Bailey TL, Noble WS. FIMO: scanning for occur-

rences of a given motif. Bioinformatics 2011;27:1017–8.

[53] Oliver S. Guilt-by-association goes global. Nature 2000;403:601–3.

[54] Xu Y, Yu Z, Zhang D, Huang J, Wu C, Yang G, et al. CYSTM, a

novel non-secreted cysteine-rich peptide family, involved in

environmental stresses in Arabidopsis thaliana. Plant Cell Physiol

2018;59:423–38.

[55] Panstruga R, Parker JE, Schulze-Lefert P. SnapShot: plant

immune response pathways. Cell 2009;136:978.e1–3.

[56] Dodds PN, Rathjen JP. Plant immunity: towards an integrated

view of plant–pathogen interactions. Nat Rev Genet 2010;11:539.

[57] Boyle EA, Li YI, Pritchard JK. An expanded view of complex

traits: from polygenic to omnigenic. Cell 2017;169:1177–86.

[58] He F, Maslov S. Pan- and core- network analysis of co-expression

genes in a model plant. Sci Rep 2016;6:38956.

[59] Luo W, Brouwer C. Pathview: an R/Bioconductor package for

pathway-based data integration and visualization. Bioinformatics

2013;29:1830–1.

[60] Vogt T. Phenylpropanoid biosynthesis. Mol Plant 2010;3:2–20.

[61] Jiang Z, He F, Zhang Z. Large-scale transcriptome analysis

reveals Arabidopsis metabolic pathways are frequently influenced

by different pathogens. Plant Mol Biol 2017;94:453–67.

[62] Tsuda K, Somssich IE. Transcriptional networks in plant immu-

nity. New Phytol 2015;206:932–47.

[63] Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, et al. AraNet v2:

an improved database of co-functional gene networks for the

study of Arabidopsis thaliana and 27 other nonmodel plant

species. Nucleic Acids Res 2015;43:D996–1002.

[64] Lee T, Oh T, Yang S, Shin J, Hwang S, Kim CY, et al. RiceNet

v2: an improved network prioritization server for rice genes.

Nucleic Acids Res 2015;43:W122–7.

[65] Li H, Zhou Y, Zhang Z. Network analysis reveals a common

host–pathogen interaction pattern in Arabidopsis immune

responses. Front Plant Sci 2017;8:893.

http://refhub.elsevier.com/S1672-0229(18)30332-2/h0120
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0120
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0125
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0125
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0125
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0125
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0125
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0130
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0130
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0130
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0130
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0135
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0135
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0135
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0135
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0140
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0140
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0140
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0140
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0145
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0145
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0145
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0145
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0150
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0150
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0150
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0150
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0155
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0155
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0155
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0160
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0160
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0160
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0160
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0160
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0165
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0165
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0165
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0170
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0170
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0175
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0175
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0175
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0175
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0180
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0180
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0180
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0185
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0185
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0185
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0190
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0190
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0195
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0195
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0195
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0195
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0195
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0200
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0200
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0205
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0205
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0205
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0210
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0210
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0210
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0210
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0215
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0215
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0215
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0220
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0220
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0220
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0225
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0225
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0225
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0230
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0230
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0230
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0235
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0235
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0235
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0240
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0240
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0240
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0245
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0245
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0245
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0250
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0250
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0250
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0255
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0255
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0255
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0255
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0260
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0260
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0265
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0270
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0270
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0270
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0270
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0275
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0275
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0280
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0280
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0285
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0285
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0290
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0290
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0295
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0295
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0295
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0300
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0305
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0305
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0305
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0310
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0310
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0315
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0315
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0315
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0315
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0320
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0320
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0320
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0325
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0325
http://refhub.elsevier.com/S1672-0229(18)30332-2/h0325

	PlaD: A Transcriptomics Database for Plant Defense Responses to Pathogens, Providing New Insights into Plant Immune System
	Introduction
	Methods
	Data collection and classification
	Microarray dataset collection and classification
	Gene ID conversion

	Differential expression analysis
	Co-expression network construction
	Gene information collection and functional annotation
	Arabidopsis and rice genes
	Wheat genes
	Maize genes

	Definition of consistency_score
	Database construction
	Pathway enrichment analysis
	Statistical analysis for transcription factors regulating freq_DEGs
	Calculation of topological parameters in networks

	Results and discussion
	A manually curated atlas of gene expression for plant–pathogen interaction
	Main interfaces and usages of the database
	A case study of PlaD application
	Pathogens trigger large-scale expression changes in plant genes
	Freq_DEGs are enriched in plant–pathogen interaction pathways
	Freq_DEGs might be regulated by major TFs
	Freq_DEGs tend to have specific network properties in gene networks

	Conclusions
	Authors’ contributions
	Competing interests
	Acknowledgments
	Supplementary material
	References


