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Abstract Plants are frequently affected by pathogen
infections. To effectively defend against such infections,
two major modes of innate immunity have evolved in
plants; pathogen-associated molecular pattern-triggered
immunity and effector-triggered immunity. Although the
molecular components as well as the corresponding
pathways involved in these two processes have been
identified, many aspects of the molecular mechanisms of
the plant immune system remain elusive. Recently, the
rapid development of omics techniques (e.g., genomics,
proteomics and transcriptomics) has provided a great
opportunity to explore plant–pathogen interactions from a
systems perspective and studies on protein–protein inter-
actions (PPIs) between plants and pathogens have been
carried out and characterized at the network level. In this
review, we introduce experimental and computational
identification methods of PPIs, popular PPI network
analysis approaches, and existing bioinformatics
resources/tools related to PPIs. Then, we focus on
reviewing the progress in genome-wide PPI networks
related to plant–pathogen interactions, including patho-
gen-centric PPI networks, plant-centric PPI networks and
interspecies PPI networks between plants and pathogens.
We anticipate genome-wide PPI network analysis will
provide a clearer understanding of plant–pathogen inter-
actions and will offer some new opportunities for crop
protection and improvement.
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1 Introduction

Plant pathogens, including bacteria, fungi, oomycetes and
viruses, can cause diseases and epidemics that greatly
affect agricultural production and food security all over the
world[1]. Historically, a series of recurring disastrous
events was related to devastating plant diseases, which
significantly affected human life and civilization[1–3]. The
most frequently mentioned event is the Great Irish Famine
from 1845 to 1852. Potato blight caused by Phytophthora
infestans eradicated the potato crop, which reduced the
Irish population by a quarter, leading to starvation, death
and forced migration[2]. In 2000, the yellow rust on wheat
caused by Puccinia striiformis spread across the United
States and triggered a reduction in wheat production[3].
Even with the applications of modern crop protection
strategies, approximately 15% of global crop production
was lost due to diverse plant diseases[1]. Therefore, plant–
pathogen interaction is a long-standing research topic in
agriculture science, which may provide better strategies for
crop protection and improvement.
The interactions between plants and pathogens involve

bidirectional recognition. On the one hand, plants need to
sense the foreign molecules delivered by pathogens to
activate the plant innate immunity. On the other hand,
pathogens need to identify special target proteins to disrupt
the plant immune system. It has been well established that
the plant innate immunity consists of two major modes,
i.e., pathogen-associated molecular pattern (PAMP)-trig-
gered immunity (PTI) and effector-triggered immunity
(ETI)[4,5] (Fig. 1). PAMPs are conserved molecules and
considered to be critical for the survival of pathogens.
Pattern recognition receptors (PRRs) located on plant
plasma membranes perceive PAMPs to trigger PTI, which
can repel most invading pathogens. To decipher the PTI
process, attention has been paid to the detection of PAMP-
PRR interactions and some key PRRs and the correspon-
ding PAMPs have been identified[6].
To overcome the PTI and dampen plant basal defenses,
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pathogens have evolved to produce effectors, some of
which enter plant cells through secretion systems[7]

(Fig. 1). In response, resistance (R) genes, which recognize
effectors and activate ETI, have evolved in plants.
Nucleotide binding/leucine-rich-repeat (NB-LRR) proteins
encoded by R genes contain an N-terminal nucleotide
binding domain and C-terminal leucine-rich-repeat
domain, and they monitor effectors in three ways[8]. The
first way is the direct interactions between NB-LRRs and
effectors. Once plant NB-LRR proteins sense pathogen
effectors, the ETI is triggered. The second and third ways
are the indirect interactions between NB-LRRs and
effectors. In the second way, NB-LRRs monitor the target
proteins of effectors. When effectors attempt to attack the
plant target proteins, which are important factors in the
plant immune defense, NB-LRRs act as guards and they
can sense the signal to activate the ETI. The third way is
the plant decoy strategy in which plants employ decoy
proteins irrelevant to immunity but structurally related to
defense components to trap effectors. As described in the
second way, decoy proteins bound to and monitored by
NB-LRR can also trigger ETI when their state is
changed[4,9].
Over recent decades, there have been many advances in

the understanding of plant–pathogen interaction. The
identification of the molecular components as well as the
corresponding pathways has provided a relatively clear
understanding of plant immune system. In particular, the
study of plant–pathogen interactions has also been
stimulated by the emergence of various omics techniques,
such as genomics, proteomics and transcriptomics. Of
these, genomics is particularly important and lays the
foundation for the development of other omics techniques.
With the rapid development of next-generation sequencing
(NGS) technique, numerous plant and pathogen genomes
have been fully sequenced. Proteomics is a key technique
for the analysis of the proteins involved in plant–pathogen

interactions[10]. Transcriptomics is also important to
investigate plant–pathogen interactions, and has been
employed to learn how plants respond to the pathogen
invasion and how pathogens counter the plant defense at
the transcript level[11]. DNA microarray and RNA
sequencing are two major transcriptomics techniques for
acquiring the expression profile of genes on a large scale.
Plant–pathogen interactions are sophisticated and dynamic
in the continually evolving competition between pathogens
and plants. When plants respond to biotic stress, a series of
biological processes rather than a single gene or protein
will be change. Therefore, it is necessary to explore plant–
pathogen interactions from a systems perspective (e.g.,
network level[12]). With the availability of huge amounts of
omics data generated from high-throughput omics techni-
ques, network interactions have become a powerful
approach to further decipher the molecular mechanisms
of plant–pathogen interactions through network biology.
In network biology, complex systems are modeled as

networks whose components are denoted as nodes and the
relationships among them are defined as edges or links. A
variety of biological systems have been investigated
through network analysis, including protein–protein inter-
action (PPI) networks, metabolic networks, gene co-
expression networks, and regulatory networks[13]. In this
review, we only focus on the construction and analysis of
PPI networks related to the complex interactions between
plants and pathogens. We first introduce the basic
definitions and properties of PPI networks, including the
experimental determination and prediction methods of
PPIs, the network analyses related to PPI networks, and the
major aspects of the application of PPI networks. Then, we
focus on reviewing the current progress and challenges of
PPI networks toward a better understanding of plant–
pathogen interactions.

2 Methods for constructing PPI networks

2.1 Basic definitions and properties of PPI networks

Protein interactions are fundamental to most biological
processes and can be presented as a network (also known
as interactome) to investigate complex biological systems.
In a PPI network (Fig. 2a), nodes and edges are basic
elements, in which each node represents a protein and each
edge represents a physical interaction between a protein
pair. The PPI network can be compiled from experimen-
tally determined or predicted PPIs. The development of
some high-throughput experimental methods has dramati-
cally accelerated genome-wide PPI network construction.
To provide a global understanding of a PPI network,

network topology analysis is necessary and it can be
carried out at different levels. At the node level, several
parameters have been proposed to describe the network
topology, such as network degree, clustering coefficient,

Fig. 1 Two major plant innate immune modes; pathogen-
associated molecular pattern (PAMP)-triggered immunity (PTI)
and effector-triggered immunity (ETI). Pattern recognition recep-
tors (PRRs) are plant proteins present on plasma membranes. Once
PRRs sense PAMPs, PTI will be activated. To interfere with PTI,
pathogens secrete effectors into plant cells. Nucleotide binding/
leucine-rich-repeat (NB-LRR) proteins can recognize effectors to
initiate ETI.
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closeness centrality, and betweenness centrality[14]. As
with other biological networks, the PPI networks have
been characterized as scale-free, in which most nodes have
low degrees and a small percentage of nodes have high
degrees[15,16]. The proteins with high degrees are often
called hubs, which tend to perform more important
functional roles than non-hub proteins. Hubs are further
classified as date and party hubs (Fig. 2b). Date hubs
display low expression correlations with their partners,
while party hubs are often highly co-expressed with their
partners[15].
The PPI networks can be analyzed at the module level

(Fig. 2c). In general, a module is defined as a cluster of
physically or functionally related nodes that are assembled
together to perform a specific function[14]. Nevertheless,
modules are not static and they change or disappear across
different conditions[17]. In a PPI network, different
modules act synergetically to perform cellular functions.
Therefore, investigating how modules in PPI networks
interact with each other is a valuable starting point in
understanding the formation of phenotypes from a systems
perspective. The detection of modules is crucial for
network analysis. Various clustering methods (Table 1),
such as Markov Cluster Algorithm (MCL), CFinder[18],
MCODE[19] and ClusterONE[20], have been developed to
address this task. Although the underlying algorithm of
each clustering method may be distinct, they have been

successfully applied to the discovery of modules in PPI
networks.
PPI networks have been widely used to address diverse

biological questions. A typical application is to infer
biological function for unknown proteins, i.e., the so-called
“guilt-by-association” strategy. The central idea of “guilt-
by-association” is that interacting proteins tend to share
similar biological function[21] and it has been applied to
improve functional annotation of proteins from different
species, including yeast[22] and Arabidopsis[23]. Moreover,
it is also possible to prioritize disease candidate proteins in
PPI networks upon the “guilt-by-association” princi-
ple[24,25].

2.2 Experimental determination of PPIs

Protein interactions can be measured using different
experimental techniques. Some high-throughput techni-
ques allow identification of a large number of PPIs in a
cell, such as yeast two-hybrid screening (Y2H), tandem-
affinity purification coupled with mass spectrometry (TAP-
MS) and protein microarray. The working principles,
detailed procedures, advantages and limitations of these
techniques have been reviewed extensively[26–29]. There-
fore, only the basic concepts of some popular techniques
are covered here.
Y2H is an in vivo PPI determination technique. Briefly,

Fig. 2 Introduction to pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) network. (a) Each node represents a
protein and each edge represents an interaction between two proteins; (b) date hubs exhibit low co-expression with their interacting
partners (i.e., interact with partners at different time and/or space), while party hubs tend to highly co-express with their partners (i.e., co-
expression at the same time and space); (c) a PPI network is divided into five modules, which are marked in different colors; (d) plant PPIs
are shown using green edges, pathogen PPIs are shown using red edges, while plant–pathogen PPIs are shown using yellow edges.
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in a Y2H experiment, a protein of interest is genetically
fused to a DNA binding domain, while another protein is
genetically fused to a transcriptional activation domain[27].
In case of a physical interaction between the protein pair, a
functional transcription factor will be reestablished,
resulting in the expression of a reporter gene. Otherwise,
the reporter gene remains inactive. Y2H has been widely
used in PPI measurements with the scales ranging from
individual proteins to whole proteomes.
TAP-MS involves the combination of affinity purifica-

tion and mass spectrometry (MS), which is also a powerful
method of studying PPIs in vitro. In a TAP-MS assay, a
protein of interest will be fused to an affinity tag for in vivo

expression. The multiple-component protein complex can
be directly isolated from the cell lysate through affinity
purification steps and further processed by a downstream
MS method[26]. The core idea of the MS method is to
produce ions that can be detected based on their mass-to-
charge ratios, thus allowing the identification of protein
sequences[28]. With the assistance of some algorithms,
finally, the search of mass spectra against known protein
sequence databases will identify the candidate proteins
involved in the interaction.
Protein arrays also provide great prospects for high-

throughput measurement of PPIs. To prepare protein
arrays, proteins are immobilized on the surface of glass

Table 1 Bioinformatics tools and resources related to plant–pathogen interactions

Name Description URL

Keyword: network clustering algorithm

MCL Fast and scalable unsupervised clustering algorithm
based on simulation of flow

http://micans.org/mcl

CFinder Fast and efficient clustering algorithm based on the
Clique Percolation Method

http://cfinder.org

MCODE Well-known automated clustering algorithm to find
highly interconnected subgraphs

http://baderlab.org/Software/MCODE

ClusterONE A graph clustering algorithm that readily generates
overlapping clusters

http://paccanarolab.org/clusterone

Keyword: cytoscape and its plugin

Cytoscape An open source software tool for integrating, visua-
lizing, and analyzing data in the context of networks

http://www.cytoscape.org

BiNGO GO enrichment analysis plugin http://apps.cytoscape.org

ClueGO GO enrichment analysis plugin http://apps.cytoscape.org

GeneMANIA Gene function prediction plugin http://apps.cytoscape.org

ReactomeFIPlugIn Pathway analysis plugin http://apps.cytoscape.org

KEGGscape Pathway analysis plugin http://apps.cytoscape.org

clusterMaker An integrative cluster plugin http://apps.cytoscape.org

Keyword: database

BioGRID A comprehensive database containing plant PPI http://www.thebiogrid.org

IntAct A comprehensive database containing plant and plant–
pathogen PPI

http://www.ebi.ac.uk/intact

TAIR An integrated Arabidopsis database containing PPI http://www.arabidopsis.org

Arabidopsis Interactome
Network Map

A proteome-wide binary protein–protein interaction
map for Arabidopsis

http://interactome.dfci.harvard.edu/A_thaliana

AtPID Arabidopsis protein interactome database http://www.megabionet.org/atpid/webfile

ANAP An integrated PPI database for Arabidopsis http://gmdd.shgmo.org/Computational-Biology/
ANAP

PHI-base Plant–pathogen PPI database http://www.phi-base.org

PRIN A predicted rice PPI network http://bis.zju.edu.cn/prin

AraNet Arabidopsis functional gene network http://www.functionalnet.org/aranet

AraONE A genome-wide Arabidopsis gene network http://systbio.cau.edu.cn/pinet/home.php

PPIN-1 A plant–pathogen immune network http://signal.salk.edu/interactome/PPIN1.html

PPIRA R. solanacearum–Arabidopsis PPI network http://protein.cau.edu.cn/ppira
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slides. This allows the detection of PPIs using fluorescent
or chemiluminescent probes[29]. Most existing protein
arrays are prepared by spotting recombinant proteins
purified from heterologous systems[27]. As a promising
alternative, the nucleic acid programmable protein array
has also been developed, which has been used to validate
plant interactome mapping[27,30].

2.3 Computational prediction of PPIs

Considering that the experimental methods are relatively
expensive, time consuming, and labor intensive, a plethora
of prediction methods have been developed to complement
the experimental methods in recent years[31]. The predic-
tion methods can be roughly grouped into three categories.
The first group relies on protein sequence/domain
similarity to conduct the PPI prediction. Representative
methods include the interolog method[32] and the domain-
based method[33]. The interolog method can be described
as the transfer of PPI annotations between species. Briefly,
two proteins can be predicted to interact with each other if
an experimentally verified interaction exists between their
respective homologous proteins in another organism. The
domain-based method uses domain interaction informa-
tion, which is derived from known protein 3D complex
structures, to infer the potential PPIs. If two proteins
contain an interacting domain pair, we can foretell that
these two proteins have a high chance to interact with each
other[34]. The second group relies on the observed
evolutionary or functional relationship of interacting
proteins to predict PPIs. In general, this type of methods
is more likely to infer functionally associated protein pairs,
rather than physical interactions. The third category uses
machine learning methods to predict PPIs based on
features extracted from protein sequences.
In general, the false positive rates derived from the

aforementioned prediction methods are still high, meaning
that there is much room for improvement. Indeed, some
novel prediction methods have been continuously deve-
loped by employing state-of-the-art prediction algorithms,
designing new computational frameworks, and incorpora-
ting more sequence/structural features[35,36]. Regarding the
genome-wide PPI network construction, it should be
emphasized that the interolog method and domain-based
method are favored and widely applied, probably due to
the fact that these two methods have clear prediction
principles and can be easily implemented.

2.4 Existing visualization tools and databases

Network visualization is becoming an integral part of the
process of network analysis, which has significantly
promoted the development of systems biology. Typically,
an excellent visualization tool not only intuitively presents
the network organization, but also can perform essential
computational analyses. One of the most popular tools is

Cytoscape (http://www.cytoscape.org) (Table 1), which is
a state-of-the-art and comprehensive network visualization
platform and allows expression profiles as well as other
molecular states to be integrated into networks. To satisfy
different purposes, a wide range of Cytoscape plugins are
available at http://apps.cytoscape.org. For example, the
plugins of BiNGO[37] and ClueGO[38] can be used for the
GO enrichment analysis; GeneMANIA[39] can bring fast
gene function prediction; and ReactomeFIPlugIn[40] as
well as KEGGscape[41] can perform the pathway analysis.
Clustering is sometimes a prerequisite to analyze the
network, and the clusterMaker plugin[42] that integrates
multiple clustering algorithms including MCODE[19] and
MCL is also available in Cytoscape.
To store and manage the increasingly large amount of

available PPI data, some well-maintained PPI databases
have been established (Table 1), which can be divided into
generic and species-specific databases. BioGRID (http://
www.thebiogrid.org)[43] and IntAct (http://www.ebi.ac.uk/
intact)[44] are two renowned generic PPI databases. Both of
them collect PPIs from the literature curation and include
PPIs from any species. In contrast, some PPI databases are
species specific. For example, The Arabidopsis Informa-
tion Resource (TAIR; http://www.arabidopsis.org)[45] is
the main repository of Arabidopsis data including PPIs; the
Pathogen-Host Interaction database (PHI-base; http://
www.phi-base.org)[46] may be a good choice to obtain
plant–pathogen interactions.

3 Understanding plant–pathogen
interaction through PPI networks

Depending on the research focus in plant–pathogen
interactions, the PPI networks under investigation can be
grouped into three types, including pathogen-centric PPI
networks, plant-centric PPI networks and interspecies PPI
networks (Fig. 2d). Pathogen-centric PPI networks can
reflect the lifestyles of different pathogens, and thus
provide further understanding of pathogen pathogenicity.
Plant-centric PPI networks are generally helpful to provide
comprehensive understanding of plant immune responses.
Comparatively, the interspecies PPI networks are more
directly involved in the competitive interaction between
plant and pathogens. We will review the current research
status of these three types of PPI networks in the following
subsections.

3.1 Construction and analysis of pathogen-centric PPI
networks

Although the genomes of many plant pathogens have been
sequenced, the experimentally determined PPIs are still
limited. To analyze PPIs from a systems perspective,
genome-wide prediction of PPI networks has been
conducted in several plant pathogens, including Magna-
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porthe grisea[47], Fusarium graminearum[48,49], Rhizocto-
nia solani[50] and Xanthomonas oryzae pv. oryzae
(Xoo)[51].
In 2008, we started a study to predict the PPI network of

M. grisea[47], which is a fungal pathogen causing the most
severe disease of rice. Based on the interolog method,
11674 predicted PPIs among 3017M. grisea proteins were
inferred from known PPIs of five model organisms. We
further assessed the reliability of the whole PPI network
through indirect computational methods. Compared with
randomized PPI networks, we found the PPIs in the
predicted network tended to share similar GO annotations,
contain known DDIs, and have correlated gene expression
patterns. To analyze the established PPI network, we
collected 100 pathogenicity proteins encoded by patho-
genicity genes from the PHI-base and published literature.
We found that 32 pathogenicity proteins existed in the
predicted PPI network. The degrees of the 32 pathogeni-
city proteins were higher than other proteins in the
predicted PPI network, which conformed to the
viewpoint that important proteins have more interacting
partners[52].
Similar work aimed at PPI network prediction for the

bacterial pathogen Xoo strain PXO99A has also been
reported[53]. To explore the pathogenic mechanisms of Xoo
PXO99A, Guo et al. applied the interolog and modified
domain-based[54] methods, and predicted 36886 PPIs
among 1988 Xoo PXO99A proteins. The K-nearest
neighbor classification[55] and GO annotation methods
demonstrated the reliability of the predicted PPI network.
Like other biological networks, the Xoo PXO99A PPI
network was also characterized as a scale-free network.
Subsequently, s factors, flagellar and chemotaxis systems,
and signal transduction subnetworks were extracted from
the predicted PPI network and these subnetworks were
focused on to study the pathogenic mechanisms of Xoo
PXO99A. They found that s28 and s54 factors could be
involved in the flagellar synthesis and motility of Xoo
PXO99A, and transcription factors RpoA, RpoB and RpoC
set up a bridge to connect s28 and s54 factors in this
process. Moreover, they speculated that the cAMP and
cyclic diguanosine monophosphate pathways which were
significant for pathogenic bacteria also existed in Xoo
PXO99A.
In general, the predicted PPI networks can enhance our

global understanding of pathogenic mechanisms of the
corresponding pathogens and can have some potential
applications, although they are far from complete and
certainly contain many false positives. First, the predicted
networks are useful in investigating many functional
unknown proteins in pathogens. Second, the modules
containing known pathogenicity genes can be detected,
which may be useful for identifying new pathogenicity
genes[47]. Last but not least, the predicted PPI network will
be further employed to guide the experimental design of
future high-throughput PPI mapping efforts.

3.2 Construction and analysis of plant-centric PPI networks

Compared with the established plant–pathogen PPI net-
works, plant PPI networks have been more intensively
studied due to their important roles in deciphering plant
gene functions. Both experimental and computational
methods have been intensively employed to chart the
plant interactome[30,56–58]. Based on an improved Y2H
system, Arabidopsis Interactome Mapping Consortium
(2011) reported the first systematic proteome-wide binary
PPI map of Arabidopsis, which covered about 6200 highly
reliable interactions among 2700 proteins[30]. Indeed, these
data had doubled the number of known PPIs of
Arabidopsis and could provide functional hypotheses for
the functions of many previously unidentified proteins.
Although the high-throughput experimental technologies
have been applied in the plant kingdom, the available PPI
data are still limited in comparison to the hundreds of
thousands of PPIs that occur in a plant cell. To narrow
down this number, computational methods have also been
employed to help the construction of PPI networks in
plants.
Geisler-Lee et al. reported an interactome[59] for

Arabidopsis predicted from interacting orthologs in four
model organisms (i.e., yeast, nematode, fruit fly and
human). Based on the amount of supporting evidence, a
confidence score for each predicted interaction was
assigned as a quality control. The predicted interactome
contained approximately 20000 interactions with different
confident levels for 3617 Arabidopsis proteins. Lin et al.
employed a Support Vector Machine classifier to predict
potential Arabidopsis PPIs based on a variety of
features[60]. It was estimated that the predicted interactions
could cover approximately 30% of the entire interactome
with reasonable precision. Comprehensive PPI networks
have also been constructed in some important crops. For
instance, the 76585 rice PPIs of the Predicted Rice
Interactome Network (PRIN) resource were deduced
from their interologs in yeast, nematode, fruit fly, human,
Escherichia coli and Arabidopsis through the InParanoid
algorithm[61].
To facilitate the work of the research community, some

plant-specific PPI databases have been established to
organize and store PPI data. One example is AtPID (http://
www.megabionet.org/atpid/webfile[62];), which contains
curated and predicted interaction data. The predicted PPI
data were inferred from interologs, microarray profiles, GO
annotation, known interacting domains and genome
contexts. This database covered 28062 PPI pairs, including
23396 pairs generated from prediction methods, 3866 pairs
collected from the literature, and 800 pairs inferred from
enzyme complexes in KEGG (http://www.genome.jp/
kegg). ANAP (Arabidopsis Network Analysis Pipeline;
http://gmdd.shgmo.org/Computational-Biology/ANAP[63];)
integrates 11 Arabidopsis protein interaction databases,
covering more than 200000 unique protein interaction
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pairs. ANAP provides a user-friendly graphical interface
that can allow easy and intuitive network visualization. It
also offers extensive detailed evidence for each interaction.
In plants, some comprehensive gene co-function net-

works have also been constructed in which PPI data are
often included. For instance, Lee et al. integrated diverse
omics data into a genome-wide Arabidopsis functional
gene network called AraNet, which contains more than one
million functional associations among 19647 genes[64]. It
should be emphasized that these established plant PPI-
related networks have been important data resources to
investigate plant immune response against the infection by
pathogens, although they were not specifically constructed
for this task.
Very recently, we constructed a genome-wide Arabi-

dopsis gene network called AraONE to study plant
immune responses against pathogen infections[65]

(Fig. 3). AraONE is an integrated gene network, which
combines mainly experimental PPIs, confirmed protein-
DNA binding data, and the co-expression relationships
between transcription factors and targets. We also collected
Arabidopsis gene mRNAmicroarray data corresponding to
two different immune responses (PTI and ETI) and control
condition from public databases. Using the microarray data
and the established gene network as input, the Network-
Guided Forest (NGF) algorithm was further used to
identify key genes/interactions involved in the immune
response. Note that NGF is an improved Random Forest
method, a powerful machine learning algorithm that
employs many different decision trees to infer the
classification model[66]. Compared with classical Random
Forest, the network topology information is introduced in
the NGF algorithm to supervise the growth of each
decision tree. Moreover, we performed comprehensive
network analyses to obtain a global understanding of the
Arabidopsis immune response. In particular, at the whole
network level, we identified immune response-related
network modules and examined the organization structures

of these modules in PTI and ETI. Notably, we found the
defense modules in ETI formed relatively independent
structures, which could reflect the evolutionary demands
for a rapid and stable immune response[65].

3.3 Construction and analysis of plant–pathogen PPI
networks

In comparison to plant or pathogen PPI networks, the
interspecies PPI networks between plants and pathogens
are more directly involved in plant–pathogen interactions.
In the past several years, studies of such types of networks
have been initiated[67,68]. Mukhtar et al. analyzed plant–
pathogen interactions by constructing an experimentally
identified interspecific PPI network (PPIN-1 in Table 1),
which contained 3148 interactions between the effectors of
pathogens (Gram-negative bacterium Pseudomonas syr-
ingae and obligate biotrophic oomycete Hyaloperonos-
pora arabidopsidis), the effector target proteins in
Arabidopsis and other Arabidopsis immune proteins[68].
They assumed that the effectors from evolutionarily
diverse pathogens targeted the same defense-related
proteins in plants. To test this hypothesis, they extracted
165 Arabidopsis proteins directly targeted by effectors, and
found that 18 proteins were commonly targeted by both
P. syringae and H. arabidopsidis, which was significantly
larger than the common ones resulting from random
experiments. Thus, the observation supported the idea that
pathogen effectors were inclined to target a limited set of
plant target proteins. Through further network topology
analysis, they also found that the target proteins of
effectors own more interaction partners (higher degree)
compared with other Arabidopsis proteins. This indicated
that pathogen effectors tended to attack hubs to disrupt
immune system, which has been extensively demonstrated
in human–virus interaction networks[69,70].
Comparatively, the interspecific PPIs between plants and

pathogens are rare. In this context, a series of computa-

Fig. 3 Methodological overview of the integration of AraONE and plant immunity-related transcriptomics data. Using the PTI/ETI gene
expression profiles and the integrated gene network (i.e., AraONE) as input, the NGF algorithm is used to train classification models for
distinguishing different microarray data. Based on the trained classification models, key genes/interactions involved in the plant immune
response can be inferred, which are further used to provide insights into the gene network organizations of PTI and ETI.
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tional studies has been initiated to predict plant–pathogen
interactions[51,71,72], although the web servers of these
prediction methods are still not available to the research
community. In 2012, we conducted the prediction of PPIs
between Ralstonia solanacearum and Arabidopsis, and
compiled the predicted interspecies PPIs into a network
called PPIRA[71]. The PPIRA network includes 3074 PPIs
between 119 R. solanacearum proteins and 1442 Arabi-
dopsis proteins. All PPIs in the network were predicted by
using the interolog and the domain-based methods. We
further analyzed the R. solanacearum–Arabidopsis inter-
actions and found that an R. solanacearum protein could
target 26 Arabidopsis proteins on average. In contrast, an
Arabidopsis protein only interacted with two R. solana-
cearum proteins on average, which possibly explained
why pathogens could infect a whole plant just through a
few pathogen proteins[73]. Likewise, this phenomenon was
also observed in X. oryzae–Oryza sativa interactions[51].
Moreover, to better understand the R. solanacearum–
Arabidopsis interactions, we collected a further 4660
experimentally identified Arabidopsis PPIs from public
PPI databases. CFinder was used to detect modules from
these Arabidopsis PPIs. Of the 83 modules obtained, 22
modules were defined as pathogen-targeted modules
containing at least one R. solanacearum-targeted protein
and significantly annotated with cell cycle, channel
activity and regulation of cellular metabolic processes.
Moreover, three proteins of the 52 R. solanacearum-
targeted proteins found in these 22 modules occurred in
more than one module and connected different cellular
processes, and these three proteins could be regarded as the
bottleneck of the network. These observations implied that
pathogens perhaps infected plants by attacking the bottle-
neck of plant networks.
The current interspecies PPI prediction method is still in

its infancy. Compared with intraspecies PPI prediction, it
may inevitably contain a higher false positive rate.
Regarding the future methodology development, three
opportunities have been identified. (1) Developing the
machine learning based predictors, since the experimen-
tally validated interspecies PPI data between plants and
pathogens are accumulating. (2) Focusing on the PPI
prediction between pathogen effectors and target proteins
in plants, which may simplify the interspecies prediction to
some extent. Recently, some state-of-the-art effector
predictors have been developed, which indeed set up a
good starting point for further prediction of effector targets
in host plants. (3) Applying new algorithms proposed for
predicting human–bacterial pathogen PPIs over the past
few years[74] to the plant–pathogen interaction system.

4 Conclusions and future perspectives

Despite the remarkable progress in the field of plant
functional genomics, our understanding of the many

fundamental molecular mechanisms governing plant–
pathogen interactions remains inadequate. With the advent
of the era of ‘Big Data’, there is an increasing realization in
the plant pathology community of the need to investigate
plant–pathogen interactions through network biology. In
this paper, we have reviewed research progress toward
systems understanding of plant–pathogen interactions in
terms of PPI networks. The current PPI network-related
studies not only allow us to obtain a global understanding
of pathogen pathogenicity and plant defense responses, but
also provide many candidate genes with potentially crucial
functions in plant–pathogen interactions[75], which deserve
further experimental validation. The following are impor-
tant challenges to be addressed.
Compared with the binary PPI information, the detailed

3D structural information of PPIs (termed as structural
interactome) is increasingly important for the commu-
nity[76]. Currently, the experimentally resolved 3D struc-
tures of PPIs between plants and pathogens are very
limited, which constrains the construction of a structural
interactome between plants and pathogens at a reasonable
scale. With the increasingly-available protein complex
structures, a large-scale structural interactome between
plants and pathogens will be constructed in the future,
which will undoubtedly allow researchers to investigate
plant–pathogen interactions at a higher resolution.
Integration of more data into PPI network is also

an efficient strategy. For instance, it has been well
established that plant endogenous microRNAs[77] and
protein post-translational modifications (e.g., phosphoryla-
tion[78] and ubiquitination[79]) are also heavily involved in
regulating plant–pathogen interactions. To integrate these
data into PPI networks, new methodologies need to be
developed.
The established PPI networks can generally be regarded

as static networks. However, the plant immune response is
a highly dynamic process. Upon pathogen recognition, the
plant cell undergoes an extensive transcriptional repro-
gramming in a highly dynamic and temporally regulated
manner[80]. Dynamic behavioral information about the PPI
network between plants and pathogens is likely to be
crucial for deciphering the molecular mechanisms of plant
immunity. To this end, integrating time course expression
data into the PPI network would be a useful strategy to
characterize the dynamics of plant–pathogen interac-
tions[65].
In addition to PPI networks, other molecular networks

(e.g., co-expression, regulatory and signaling networks)
are equally important to decipher plant–pathogen interac-
tions. Undoubtedly, different network analysis and model-
ing tools are required when dealing with diverse networks.
Last but not least, the current systems biology studies are
mainly focused on the model plant–pathogen interaction
systems. Therefore, finding ways to transfer the knowledge
obtained from model systems to crop protection and
improvement is an urgent and challenging task.
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