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Network-Based Comparative 
Analysis of Arabidopsis Immune 
Responses to Golovinomyces orontii 
and Botrytis cinerea Infections
Zhenhong Jiang*, Xiaobao Dong* & Ziding Zhang

A comprehensive exploration of common and specific plant responses to biotrophs and necrotrophs is 
necessary for a better understanding of plant immunity. Here, we compared the Arabidopsis defense 
responses evoked by the biotrophic fungus Golovinomyces orontii and the necrotrophic fungus Botrytis 
cinerea through integrative network analysis. Two time-course transcriptional datasets were integrated 
with an Arabidopsis protein-protein interaction (PPI) network to construct a G. orontii conditional 
PPI sub-network (gCPIN) and a B. cinerea conditional PPI sub-network (bCPIN). We found that hubs 
in gCPIN and bCPIN played important roles in disease resistance. Hubs in bCPIN evolved faster than 
hubs in gCPIN, indicating the different selection pressures imposed on plants by different pathogens. 
By analyzing the common network from gCPIN and bCPIN, we identified two network components in 
which the genes were heavily involved in defense and development, respectively. The co-expression 
relationships between interacting proteins connecting the two components were different under  
G. orontii and B. cinerea infection conditions. Closer inspection revealed that auxin-related genes 
were overrepresented in the interactions connecting these two components, suggesting a critical role 
of auxin signaling in regulating the different co-expression relationships. Our work may provide new 
insights into plant defense responses against pathogens with different lifestyles.

Plant pathogens, including viruses, bacteria, fungi, oomycetes and nematodes, can cause severe economic and 
ecological damage. According to their lifestyles, plant pathogens can be generally divided into two major catego-
ries, biotrophs and necrotrophs. Biotrophs feed on living host cells. Thus, they keep host cells alive during their 
invasion to complete their life cycles. Powdery mildew is a fungal disease that affects a wide range of plant species, 
including many economically important crops1. As a powdery mildew fungus, Golovinomyces orontii has an obli-
gate biotrophic lifestyle, and it has been shown to colonize Arabidopsis under controlled laboratory conditions2. 
In contrast, necrotrophs acquire their nutrients from dead cells. Necrotrophs often secrete enzymes and plant 
toxins into host cells to kill and degrade them3. Botrytis cinerea is recognized as a typical necrotrophic fungus that 
causes grey mould disease4. B. cinerea affects over 200 crop species, resulting in serious economic losses. The life 
cycles of G. orontii and B. cinerea on Arabidopsis follow a defined infection progression, including conidium ger-
mination, appressorium formation, penetration of the host surface and conidiophore formation2,3. Under optimal 
conditions, the infection cycles of G. orontii and B. cinerea require approximately 5 and 3–4 days, respectively.

A multitude of studies have investigated plant defense responses against pathogens with different lifestyles, 
making great contributions to our understanding of plant immunity5–7. In particular, it is well established that 
plant hormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), play a central role in the reg-
ulation of plant immune responses. However, their functional roles differ in plant immune responses against 
pathogens with different lifestyles5,8–10. SA has been shown to induce defense against biotrophs, whereas JA/ET 
positively mediates immunity to necrotrophs8. For example, mutants in SA biosynthesis or signal transduction 
are more susceptible to G. orontii11,12. Both an ET-insensitive mutant (ein2-1) and a JA-insensitive mutant (coi1-1) 
have been reported to be highly susceptible to B. cinerea infection, which demonstrates the important roles of JA 
and ET in resisting B. cinerea13,14. In addition, plant defense responses usually result in reduced plant growth15. It 
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has been clearly demonstrated that plant growth hormones, such as auxin, gibberellin (GA) and brassinosteroid 
(BR), regulate the trade-off between plant growth and immunity16–18. As a key regulator of plant growth and 
development, auxin is heavily involved in regulating plant immunity19. Arabidopsis mutants with repressed auxin 
signaling show increased resistance to the biotrophic pathogen Pseudomonas syringae but increased susceptibil-
ity to the necrotrophic pathogen B. cinerea20. The plant hormone GA promotes plant growth and development 
by degrading DELLA proteins, a type of growth-repressing protein21. DELLA proteins have also been found to 
promote disease susceptibility in biotrophs and resistance to necrotrophs by modulating JA and SA signaling22. 
Recent studies have also highlighted the role of the BR signaling pathway in plant immunity. For instance, the 
BR-activated transcription factor (TF) BZR1 (for BRASSINAZOLE-RESISTANT 1) has been reported to mediate 
plant growth and immunity by interacting with several WRKY TFs23.

Recently, high-throughput experiments have resulted in the increasing availability of omics data (e.g., interac-
tomes and transcriptomes). The availability of these data for plant stress responses provides a good opportunity 
to employ computational systems biology approaches to advance our understanding of plant stress responses. For 
example, a meta-analysis of 386 Arabidopsis microarray samples was conducted to detect genes and co-expression 
modules common to drought and bacterial stress responses24. By a comparative analysis of differentially expressed 
genes responding to P. syringae infection or attack by the insect Brevicoryne brassicae, Barah et al. explored the 
general and attacker-specific defense response genes in Arabidopsis25. In 2014, Tully et al. employed the concept 
of biological networks to better interpret immune-related transcriptomic data26. They generated a genome-wide 
Arabidopsis immune co-expression network using large-scale transcriptional data and identified 156 distinct 
immune-related functional modules. Recently, we also employed an advanced machine learning method to inte-
grate the Arabidopsis gene network with a series of transcriptional data27. Through comprehensive network anal-
ysis, we revealed shared and distinct plant gene network organizations between pattern-triggered immunity and 
effector-triggered immunity.

Although many experimental studies have been carried out to decipher general plant immune responses, a 
systematic analysis that integrates different omics data has not been used to compare plant defense responses to 
pathogens with different lifestyles. Recently, microarray experiments measuring plant immune responses to the 
biotrophic pathogen G. orontii and necrotrophic pathogen B. cinerea have been conducted28, providing impor-
tant data resources for further computational analyses. In this work, we conducted a comparative analysis of 
plant defense responses to G. orontii and B. cinerea by integrating transcriptional data and the Arabidopsis PPI 
network (Fig. 1a). By mapping time-course transcriptional data to PPIs, we constructed two conditional PPI 
sub-networks, namely the G. orontii conditional PPI sub-network (gCPIN) and the B. cinerea conditional PPI 
sub-network (bCPIN), to characterize the plant defense responses against G. orontii and B. cinerea. First, we 
assessed the biological significance of the two conditional PPI sub-networks and focused on the analysis of hub 
proteins in plant immunity. Moreover, by comparing the two conditional PPI sub-networks, we were able to 
reveal two network components that were involved in plant development and defense, respectively. We attempted 
to explain the distinct expression correlations between interacting proteins connecting the two network compo-
nents during plant defense response to pathogens with different lifestyles. Finally, we developed a website for the 
scientific community to interactively explore the networks constructed in our work.

Results and Discussion
Experimental PPI Network and Time-Course Transcriptional Data Sets in Arabidopsis Immune 
Responses.  Experimental Arabidopsis PPI data were collected from three publicly available molecular inter-
action databases, TAIR29, IntAct30 and BioGRID31. Predicted PPIs were not considered in our work due to their 
relatively low reliability. Thus, we obtained 6,640 proteins and 16,797 experimentally validated interactions, which 
constituted the primary PPI network in this work.

Two series of time-course transcriptional data, which measured the transcriptional responses of Arabidopsis 
to two different pathogens, were used in our work. The first (GEO accession number: GSE5686) was generated 
by the AtGenExpress project, which detected Arabidopsis defense responses at 8 different time points during 
infection by a biotrophic fungus (i.e., G. orontii ). The second (GEO accession number: GSE29642) was produced 
by Windram et al. and contained 24 time points after inoculation with a necrotrophic fungus (i.e., B. cinerea)28.

We removed proteins without expression values in either transcriptional dataset from the primary PPI net-
work. The retained network (AraPPINet), covering 5,598 proteins and 13,328 interactions, was used for the fur-
ther construction of conditional PPI sub-networks (Supplemental Table S1).

Construction of PPI Sub-networks Responding to Different Pathogens.  As an important strategy 
to integrate the transcriptome data and PPI network, gene expression correlations between interacting proteins 
have been widely used to identify conditional sub-networks32–34. By only considering PPIs with high gene expres-
sion correlation, such integration is able to detect condition-specific protein interactions. To construct the con-
ditional PPI sub-networks under G. orontii or B. cinerea infection (i.e., gCPIN and bCPIN), the corresponding 
transcriptional data were integrated into AraPPINet. The Pearson correlation coefficient (PCC) was employed to 
measure the gene expression correlation between two interacting proteins. Transcriptional data from infected tis-
sues were used to calculate the PCC value for each interaction. The biological significance of a PCC value depends 
on the corresponding transcriptional data and the choice of normalization method35. To obtain a significant PCC 
threshold for each transcriptional data, we chose the PCC threshold based on the random PCC distribution (see 
Materials and Methods for details). First, we randomly permuted the transcriptional data and generated a ran-
dom PCC distribution based on the permuted data. Then, the PCC value ranked in the top 10% from the random 
PCC distribution was selected as the threshold. Thus, the threshold values of 0.27 and 0.50 were selected for the 
construction of gCPIN and bCPIN, respectively. Keeping interactions with PCC above the threshold, we obtained 
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two conditional PPI sub-networks: gCPIN, including 4,353 interactions between 3,101 proteins; and bCPIN, 
covering 3,388 proteins and 4,615 interactions (Supplemental Fig. S1 and Supplemental Table S1).

To assess the biological significance of gCPIN and bCPIN, a series of analyses were carried out, including 
topological analysis, modularity analysis and functional enrichment analysis. Several global network topological 
parameters that reflect the general arrangement of nodes or interactions within gCPIN and bCPIN are displayed 
in Supplemental Table S2. Generally, gCPIN and bCPIN displayed topological properties similar to typical bio-
logical networks. For instance, the node degrees in the two conditional PPI sub-networks followed the power-law 
distribution36 (Fig. 1b). Moreover, most biological networks can also be organized into modules, which are 
defined as clusters of closely connected nodes inside a network37,38. In this work, the Markov Cluster Algorithm 
(MCL) algorithm was used to identify network modules from the two conditional PPI sub-networks39. In total, 
we obtained 364 and 380 modules from gCPIN and bCPIN, respectively. For gCPIN and bCPIN, approximately 
85% and 84% proteins were represented in modules, indicating that our conditional PPI sub-networks were 
organized into modules, similarly to most biological networks40. Gene annotation analysis showed that most 
modules could be enriched with at least one Gene Ontology (GO) term. For the 364 modules from gCPIN, 295 
were enriched for at least one GO term. For the 380 modules from bCPIN, 315 were enriched for at least one GO 
term. Among these modules with enriched GO terms, 37 modules from gPCIN and 44 modules from bPCIN 

Figure 1.  Construction of conditional PPI sub-networks reflecting Arabidopsis immune responses to  
G. orontii and B. cinerea. (a) We integrated time-course transcriptional data into a static Arabidopsis PPI 
network to obtain two conditional PPI sub-networks by keeping positively correlated interactions with PCC 
values larger than the given thresholds. The PCC thresholds of 0.27 and 0.50 were chosen for gCPIN and 
bCPIN, respectively. We first compared the hubs from gCPIN and bCPIN. Then, we constructed a common 
response network by selecting common edges from gCPIN and bCPIN. Finally, we measured the relationship 
between network components from the common response network by expression correlation analysis. 
(b) Degree distribution of gCPIN (left) and bCPIN (right). Frequency-degree relationship is plotted on a 
logarithmic scale. Degree (x) represents the number of edges for each node, and frequency (y) measures the 
number of nodes with a given degree. Both gCPIN and bCPIN follow a power-law distribution.
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were annotated with the GO term “defense responses”. Many modules from gCPIN or bCPIN were also annotated 
with plant hormone (SA, JA or ET)-related GO terms (Supplemental Table S3). Moreover, we manually collected 
538 plant defense-related genes (see Materials and Methods). By mapping the 538 genes to AraPPINet, gCPIN 
and bCPIN, we found that plant defense-related genes were significantly enriched in gCPIN (hypergeometric test, 
p-value =  2.49 ×  10−4) and bCPIN (hypergeometric test, p-value =  0.0429) compared to AraPPINet.

Taken together, these results indicated the biological significance of gCPIN and bCPIN. In the subsequent 
analysis, we focused on the comparative analysis between gCPIN and bCPIN for the investigation of plant defense 
responses to G. orontii and B. cinerea.

Hubs Play Important Roles in Plant Immunity.  In a PPI network, hubs are generally defined as proteins 
(nodes) with a significantly higher degree than other nodes41. In this work, the top 10% of highly connected 
proteins in the two conditional PPI sub-networks were selected as hubs. We identified 418 hubs in gCPIN and 
407 hubs in bCPIN. To examine their functional roles in plant immunity, we analyzed the enrichment of plant 
defense-related genes, TFs and hormone-related genes in hubs. As expected, plant defense-related genes were sig-
nificantly enriched in hubs from gCPIN and bCPIN (hypergeometric test, p-value =  5.98 ×  10−6 and 7.18 ×  10−5, 
respectively). Plant hormones and TFs have been reported to play vital roles in plant immunity8,42. In total, we 
collected 1,231 plant hormone-related genes from AHD2.043, covering eight hormone types [i.e., auxin, absci-
sic acid (ABA), GA, cytokinin (CK), ET, BR, SA and JA] and 1,717 TFs from PlantTFDB44 (see Materials and 
Methods). Similarly, plant hormone-related genes and TFs were overrepresented in hubs (statistical p-values are 
listed in Supplemental Table S4).

We divided the hubs in gCPIN and bCPIN into three groups (gCPIN-specific hubs, bCPIN-specific hubs 
and common hubs). The gCPIN-specific hubs were hubs only in gCPIN, the bCPIN-specific hubs were hubs 
only in bCPIN, and common hubs were hubs shared by bCPIN and gCPIN. We obtained 182 gCPIN-specific 
hubs, 171-bCPIN specific hubs and 236 common hubs (Fig. 2). The distinct roles of these condition-specific 
hubs in the plant defense responses to biotrophs and necrotrophs should be strongly related to their corre-
sponding interaction partners in gCPIN and bCPIN. For example, SA receptor NPR1 (for NONEXPRESSOR 
OF PATHOGENESIS-RELATED PROTEINS1) had 9 interaction partners in gCPIN and 2 partners in bCPIN 
(Supplemental Fig. S2A), which was consistent with the important role of SA signaling in resisting biotrophic 
pathogens. For the nine interaction partners of NPR1 in gCPIN, four were TGA (for TGACG sequence-specific 
binding protein) transcriptional factors (TGA1, TGA2, TGA3 and TGA7). Interactions between NPR1 and TGAs 
can further regulate the expression of PATHOGENESIS-RELATED genes that confer resistance to pathogens45. 
The Arabidopsis RING E3 ligase, HUB1 (for HISTONE MONOUBIQUITINATION1) was shown to be essen-
tial for resistance to B. cinerea, while hub1 mutant plants exhibited no effect on resistance to P. syringae46. In 
our conditional PPI sub-networks, HUB1 had 20 interaction partners in bCPIN and only 3 partners in gCPIN 
(Supplemental Fig. S2B). It is reasonable to speculate that HUB1 regulates plant immunity to B. cinerea through 
wide interactions with its partners in bCPIN. To further decipher the molecular mechanism of HUB1 in regu-
lating plant immunity to necrotrophs, these partners can serve as important candidates for experimental verifi-
cation. More details regarding hub degree distribution can be interactively explored through our website (http://
systbio.cau.edu.cn/BN/index.php).

Figure 2.  Scatter plot of hub proteins. The degree of hub proteins in bCPIN is plotted against the 
corresponding degree in gCPIN. For better presentation, hubs with degrees larger than 30 were normalized 
to the degree region between 30 and 40. The functional roles of hubs in hormone signaling, transcriptional 
regulation or plant immunity are displayed using different colors. Red, blue and green nodes represent defense-
related genes, hormone-related genes and TFs, respectively. Hubs with multiple functional roles are colored 
in purple. The remaining hubs are colored in grey. Plant defense-related hubs are marked with their symbols. 
Because many nodes have the same degrees in two sub-networks, they are overlapped in the scatter plot. For 
better presentation, a web-based scatter plot is also available at http://systbio.cau.edu.cn/BN/index.php.

http://systbio.cau.edu.cn/BN/index.php
http://systbio.cau.edu.cn/BN/index.php
http://systbio.cau.edu.cn/BN/index.php
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Hubs in bCPIN Evolve Faster than Hubs in gCPIN.  We also investigated the selection pressures imposed 
on hubs by pathogens with different lifestyles. For this purpose, we analyzed the evolutionary rates of hubs by cal-
culating their dN/dS (i.e., the ratio between nonsynonymous and synonymous substitution rates) values between 
Arabidopsis and Carica papaya (see Materials and Methods). We found that the average dN/dS values of hubs 
in both gCPIN and bCPIN were much smaller than 1, which indicated that the hubs had experienced strong 
purifying selection (Fig. 3a). This result is not surprising, as the node connectivity in a PPI network is negatively 
correlated with evolution rate47. Comparatively, the average dN/dS ratio of hubs in gCPIN was significantly lower 
than hubs in bCPIN, indicating that hubs in bCPIN evolved faster than hubs in gCPIN. We further compared 
the evolutionary rates of three groups of hubs defined previously (gCPIN-specific hubs, bCPIN-specific hubs and 
common hubs). As expected, the average dN/dS ratio of bCPIN-specific hubs was significantly higher compared 
to gCPIN-specific and common hubs (Fig. 3b). Considering that the two conditional PPI sub-networks were 
composed of interactions responding to G. orontii and B. cinerea infection, these results indicate the different 
selection pressures imposed on plants by pathogens with different lifestyles. Compared with G. orontii, the dam-
age imposed by the necrotrophic pathogen B. cinerea on the plant was more destructive. Therefore, hubs involved 
in the response to B. cinerea invasion are likely to evolve faster to ensure successful defense.

Common Response Network from gCPIN and bCPIN.  To further investigate the relationship between 
plant immune responses induced by G. orontii and B. cinerea, we selected common edges from gCPIN and bCPIN 
and constructed a common response network covering 1,702 nodes and 1,619 edges (Supplemental Table S1 and 
Supplemental Fig. S3). GO annotation of the common response network showed that many biological processes 
in Arabidopsis were influenced by both G. orontii and B. cinerea (Supplemental Fig. S4). Approximately 35% of 
nodes (517 of 1,478) were annotated to the term response to stimulus with an adjusted p-value of 9.20 ×  10−92 
(hypergeometric test with Benjamini-Hochberg correction), which was consistent with the biological significance 
of the common response network. Developmental processes were also prominently enriched in the common 
response network, and the corrected p-value for this term was 9.47 ×  10−46, which was consistent with the com-
mon knowledge that plant growth and development are influenced during the plant immune response48. Other 
biological processes, such as photosynthesis and vesicle-mediated transport, were also enriched. Detailed descrip-
tions of all the enriched GO terms are provided in Supplemental Table S5.

In terms of network organization, the common response network was organized into many components 
(Supplemental Fig. S3). A component was defined as a group of connected nodes disconnected from the other 
nodes in the network. We extracted 109 components with at least three proteins from the common response 
network, many of which were enriched with GO terms. For example, we found that the two largest compo-
nents were significantly enriched in plant development and plant defense responses (Table 1; Full annotations 
of these two components are listed in Supplemental Table S5). The largest component, consisting of 468 nodes 
and 560 edges, was annotated as “defense response” with a significant p-value of 5.47 ×  10−13. The second larg-
est component, consisting of 258 nodes and 330 edges, was significantly enriched with “developmental pro-
cess” (p-value =  1.06 ×  10−13). According to their biological functions, we named the two components DefRC 
(Defense-Related Component) and DevRC (Development-Related Component) (Fig. 4a).

To investigate whether the identification of components was related to the choice of PCC thresholds, we recon-
structed and analyzed the common response network using a more stringent cutoff (Supplemental Fig. S5A).  
The results showed that the identification of these components was largely stable with the alteration of PCC 
threshold, although the resulting components were smaller with the stricter threshold. Moreover, we permuted 
the transcriptional data by shuffling the expression values for each gene among different time points. The result 
showed that the components constructed from our method cannot be generated using the randomized data 
(Supplemental Fig. S5B). Most nodes of the common response network resulting from randomized data were 

Figure 3.  Hubs in gCPIN are more evolutionarily constrained than hubs in bCPIN. (a) Mean dN/dS (± s.e.) 
for two classes of hubs. Hubs in gCPIN and bCPIN both experience purifying selection with low mean dN/dS 
values. However, hubs in gCPIN are more evolutionarily constrained than hubs in bCPIN, with a significant 
p-value <  0.05 (Student’s t test). (b) Mean dN/dS (± s.e.) for gCPIN-specific hubs, bCPIN-specific hubs and 
common hubs. The results show that bCPIN-specific hubs have higher dN/dS than gCPIN-specific hubs 
(Student’s t test, p-value <  0.01) and common hubs (Student’s t test, p-value <  0.01).
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discrete or organized into extremely small components. The above control experiments clearly demonstrate that 
these components are mainly determined by the transcriptome data obtained from tissues infected by G. orontii 
and B. cinerea.

Distinct Expression Correlation of Interactions Connecting Network Components.  To better 
understand the relationships of the network components, we connected the network components using interac-
tions from AraPPINet, which were further classified according to the expression correlation under G. orontii or 
B. cinerea infection conditions. We found that interactions connecting sizable network components (containing 
at least 10 proteins) often had different expression correlations under different conditions (Supplemental Fig. S6). 
Interactions between some components were positively correlated under G. orontii infection condition but nega-
tively correlated under B. cinerea infection condition, and vice versa. The expression correlation between DevRC 
and DefRC showed the most significant difference. There were 325 interactions between DevRC and DefRC in 
AraPPINet. For simplicity, we divided these interactions into positive and negative interactions using the PCC 
values calculated from the transcriptome data. Positive interactions were defined the same way as in the construc-
tion of the conditional PPI sub-network. To define negative interactions, we selected a threshold corresponding 
to the 10% lowest PCCs in the random PCC distribution, and a negative interaction was assigned if the PCC value 
was below the threshold (See Materials and Methods). Thresholds of − 0.5 and − 0.27 were then selected to define 
negatively correlated interactions under G. orontii and B. cinerea infection conditions, respectively. Under G. 
orontii infection condition, 267 interactions connecting DevRC and DefRC were negatively correlated (Fig. 4b), 
and there were no positively correlated interactions. By contrast, we obtained 170 positive interactions and 53 
negative interactions between DevRC and DefRC based on B. cinerea responsive transcriptional data (Fig. 4c).

In addition to the distinct expression correlation between DevRC and DefRC, the expression patterns of 
genes in DevRC and DefRC were also different in response to G. orontii and B. cinerea infections. Here, a gene 
was defined as differentially expressed if its expression was altered by greater than 1.2-fold change between 
spore-infected (treatment) and mock-treated (control) plants at any time point. All genes in DefRC and DevRC 
were differentially expressed following B. cinerea infection. Similarly, after G. orontii infection, most genes in 

Components GO-ID
Corrected 
 p-valuea

Number of 
associated genes Description

DefRC

50896 6.09 ×  10−44 179 Response to stimulus

6950 8.23 ×  10−26 109 Response to stress

9607 8.62 ×  10−21 53 Response to biotic stimulus

51707 6.23 ×  10−18 48 Response to other organism

6952 5.47 ×  10−13 45 Defense response

DevRC

15979 1.50 ×  10−18 21 Photosynthesis

32501 2.25 ×  10−17 61 Multicellular Organismal Process

7275 1.63 ×  10−13 53 Multicellular Organismal Development

48856 2.64 ×  10−13 48 Anatomical Structure Development

32502 1.06 ×  10−12 54 Developmental Process

Table 1.   GO enrichment of two major network components. aThe corrected p-values were calculated from 
the hypergeometric test after Benjamini-Hochberg false discovery rate correction.

Figure 4.  Different expression correlations between DevRC and DefRC. Nodes represent proteins, red edges 
represent positively correlated interactions between two nodes, and green edges represent negatively correlated 
interactions. (a) Interactions in two connected components, DefRC (left) and DevRC (right), are all positively 
correlated under G. orontii and B. cinerea infection conditions. (b) Co-expression relationship calculated using 
time-course transcriptional data from G. orontii-infected tissues. (c) Co-expression relationships calculated 
using time-course transcriptional data from B. cinerea-infected tissues.
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DefRC (88.7%) and DevRC (87.2%) were differentially expressed. The extensive changes in gene expression in 
DefRC and DevRC further showed the activation of plant defenses and the impact on plant development follow-
ing G. orontii and B. cinerea infection.

We also compared the number of differentially expressed genes in DevRC and DefRC at different stages 
of infection. According to the infection cycle, time-course transcriptional data were divided into three stages  
(see Materials and Methods). Following G. orontii infection, many genes in DefRC were up-regulated at all three 
stages, which revealed the activation of plant immunity (Supplemental Fig. S7A). After B. cinerea infection, many 
genes were also up-regulated in DefRC. However, more genes were suppressed, and the number of suppressed 
genes increased with infection stage (Supplemental Fig. S7B). B. cinerea is an aggressive necrotrophic pathogen 
that secretes enzymes and toxic molecules to kill host cells. Therefore, along with the activation, partial defense 
responses were suppressed, and the suppression got stronger as the infection progressed. Regarding DevRC, more 
genes tended to be down-regulated over the course of G. orontii or B. cinerea infection. This result is consistent 
with many previous findings that plants suppress developmental processes to allocate energy to resist patho-
gen invasion49–51. The repression of plant development was stronger under B. cinerea infection (Supplemental  
Fig. S7C,D). At the early stage of B. cinerea infection, more than half (55.8%) of DevRC genes were suppressed, 
and almost all genes (95.3%) were suppressed at the late stage.

Enrichment of Auxin-Related Genes on the Dev-Def Interface.  The interface connecting two com-
ponents is the place where different biological processes coordinate with each other32,33 and deserves further 
investigation. The Dev-Def interface was defined as interactions connecting DevRC and DefRC. We obtained 325 
PPIs among 240 genes on the Dev-Def interface. We found that some genes on the Dev-Def interface were already 
known to participate in the regulation of plant growth and defense (Table 2). Moreover, more than 60% genes on 
Dev-Def interface were hubs in gCPIN or bCPIN, further indicating their important roles.

We noticed that auxin-related genes were overrepresented on the Dev-Def interface, which may better explain 
how the plant regulates the trade-off between growth and immunity. For the 38 auxin-related genes in DevRC 
and DefRC, 30 genes were distributed on the Dev-Def interface (hypergeometric test, p-value =  3.20 ×  10−9). 
Auxin is known to regulate many aspects of plant growth and development. Its role in plant-pathogen inter-
action has also been widely reported19. Some auxin-related genes on the interface, such as ARF1 (for AUXIN  
RESPONSE FACTOR 1), ARF2 (for AUXIN RESPONSE FACTOR 2) and AXR6 (for AUXIN RESISTANT 6) 

Gene Symbol Function in plant development Function in plant defense

AT4G03190 AFB1
Regulates most aspects of auxin 

responses throughout plant 
growth and development

Negatively regulates plant defense 
response to Hyaloperonospora 
arabidopsidis and P. syringae

AT4G34460 AGB1 Affects multiple developmental 
processes

agb1 mutant is more susceptible to 
A. brassicicola, B. cinerea, Fusarium 

oxysporum and Plectosphaerella 
cucumerina

AT1G59750 ARF1 Regulates senescence and floral 
organ abscission

arf1 mutant increases resistance against 
biotrophs

AT5G62000 ARF2 Regulates senescence and floral 
organ abscission

Negatively regulates defense response 
against Sclerotinia sclerotiorum

AT4G02570 AXR6 Required for auxin signaling axr6 mutant increases susceptibility to  
P. cucumerina and B. cinerea

AT1G75080 BZR1 Involved in BR-induced growth Suppresses immune signaling

AT3G51920 CML9 Involved in plant growth control Participates in plant innate immunity

AT1G22920 CSN5A csn5a mutant exhibits negative 
effect on plant development

Targeted by effectors and protected by 
R proteins

AT1G14920 GAI Represses vegetative growth and 
floral induction

gai mutant promotes susceptibility to 
virulent P. syringae and is more resistant 

to A. brassicicola

AT3G45640 MPK3 Regulates stomatal development 
and patterning Positively regulates defense response

AT2G43790 MPK6 mpk6 mutant exhibits defect in 
anther and embryo development Positively regulates defense response

AT4G35580 NTL9 Regulates leaf senescence Essential for MAMP-triggered stomatal 
closure

AT1G32230 RCD1 rcd1 mutant displays 
developmental defects

Participates in regulating balance 
between plant growth and defense

AT2G01570 RGA1 Represses vegetative growth and 
floral induction

rag1 mutant shows reduced resistance to 
Magnaporthe grisea

AT4G32570 TIFY8 Overexpression of TIFY8 affects 
primary root growth Suppressed by virulent P. syringae

AT3G62980 TIR1 tir1 mutant displays diverse 
developmental defects Required for susceptibility to P. syringae

Table 2.   Genes appearing on interactions connecting DevRC and DefRC, which are involved in plant 
defense and developmenta. aThe corresponding literature reference for each gene is listed in Supplemental 
Table S6.
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(Table 2), have been documented as involved in plant immunity. Moreover, other hormone genes regulating the 
trade-off between plant growth and immunity also appeared on the interface (Table 2). For example, BZR1, a 
positive regulator of the BR signaling pathway, was recently identified as an important regulator mediating the 
trade-off between plant growth and immunity23.

We further examined the interactions between 30 auxin-related genes located on the Dev-Def interface. 
Similar to the differential expression correlation of interactions between DevRC and DefRC, all interactions 
between the 30 auxin-related genes were negatively correlated in response to G. orontii infection but positively 
correlated in response to B. cinerea infection (Supplemental Fig. S8). Previous studies have demonstrated that 
auxin signaling is essential for necrotrophic resistance but induces susceptibility to biotrophs20,52. In agreement 
with the above finding, the different correlations of interactions between auxin-related Dev-Def interface pro-
teins may provide new insights into the functional roles of auxin-related genes in the regulation of plant immune 
responses against different lifestyle pathogens.

A Web Tool for Interactive Network Visualization.  For the convenience of the research community, 
we have created a user-friendly website to interactively explore and visualize the networks constructed in our 
study (http://systbio.cau.edu.cn/BN/index.php). The website was implemented using Sigmajs Exporter, a plugin 
in Gephi (https://marketplace.gephi.org/plugin/sigmajs-exporter/). In addition to the interactive network explo-
ration, we also converted the scatterplot of hubs in gCPIN and bCPIN into an interactive web application based 
on Shiny (http://shiny.rstudio.com/).

Limitations of Current Work.  Our results are based on currently available interactome and transcriptional 
data and must be interpreted with caution. One major limitation of the comparative analysis is the bias of the 
expression data used to construct gCPIN and bCPIN. For example, the transcriptional data GSE5686 were col-
lected from only leaves 7–10, while the transcriptional data GSE29642 were collected from leaf 7. We conducted 
a computational experiment to investigate how the conditional PPI sub-network can be affected when different 
gene expression data measuring the same pathogen infection were used. For this purpose, we constructed a 
new gCPIN (gCPIN-GSE13739) using another dataset, GSE13739, which measures Arabidopsis gene expression 
at 6 time points after inoculation with G. orontii53. Using the same workflow as the construction of the origi-
nal gCPIN, the resulting gCPIN-GSE13739 covered 2,754 nodes and 3,454 edges. The number of shared PPIs 
between gCPIN-GSE13739 and the original gCPIN was 2,266 (the proportion of overlapping interactions was 
65.6%). We also permutated the expression data of GSE5686 1,000 times and constructed a conditional network 
for each permutation. The average number of overlapping interactions between randomly conditional networks 
and gCPIN was 482 (the average proportion of overlapping interactions was 35.1%). In general, the fraction of 
PPIs shared by gCPIN and gCPIN-GSE13739 was significantly higher than the fraction shared by gCPIN and 
1,000 randomly conditional networks (Supplemental Fig. S9, Student’s t test p-value <  2.20 × 10–16). This signif-
icant overlap indicated that the construction of gCPIN can capture the core PPIs related to the infection of G. 
orontii, but we also observed a large number of different PPIs between the two gCPINs. Thus, it is possible that the 
results of the comparative analysis would also be affected by the use of different expression data. To obtain more 
reliable results, therefore, using expression data under identical laboratory conditions and treatments would be 
a better choice.

Another limitation of the current work is that we only considered highly correlated PPIs in the construc-
tion of gCPIN and bCPIN. On the one hand, the available Arabidopsis interactome is still far from complete. 
Some genes without interaction partners in the current coverage are not included in this work, but they 
might play important functional roles in plant immunity. On the other hand, less abundant or tissue-specific 
transcripts may be missed by retaining only PPIs with high expression correlation. Through analysing the 
expression levels of genes from AraPPINet and two conditional PPI sub-networks, we found that the expres-
sion levels of genes from gCPIN or bCPIN were significantly higher than the expression levels of genes 
from AraPPINet (Supplemental Fig. S10, Student’s t test, p-value =  3.12 × 10–5 for gCPIN vs. AraPPINet and 
p-value =  6.79 × 10–6 for gCPIN vs. AraPPINet). Moreover, we also downloaded 746 tissue-specific Arabidopsis 
genes from the literature54. Of these 746 tissue-specific genes, 109 appeared on AraPPINet. After data integra-
tion, 63 of these 109 genes were not included in gCPIN (hypergeometric test, p-value =  3.55 × 10–3), and 60 
genes were excluded from bCPIN (hypergeometric test, p-value =  6.43 × 10–4). The above analyses showed that 
less abundant or tissue-specific genes tended to be filtered out by our method. Undoubtedly, the Arabidopsis 
interactome will become more complete, and more time-course transcriptional data measuring Arabidopsis 
gene expression under pathogen infection will be generated in the near future. The availability of these data 
will allow scientists to design more advanced workflows, perform more comprehensive analyses and obtain 
more reliable results.

Conclusion
In summary, we constructed two conditional PPI sub-networks (gCPIN and bCPIN) to compare plant immune 
responses against the biotrophic pathogen G. orontii and the necrotrophic pathogen B. cinerea by integrating 
transcriptional data and Arabidopsis PPI data. First, we found that hubs in gCPIN and bPCIN played important 
functional roles in plant immunity. Plant defense-related genes, plant hormone-related genes and TFs were over-
represented in hubs; the distinct roles of gCPIN/bPCIN-specific hubs in plant defense responses to biotrophs and 
necrotrophs should be related to their different interaction partners in two networks. Moreover, we found that 
hubs in bCPIN evolved faster than hubs in gCPIN. By analyzing common interactions from gPCIN and bCPIN, 
we further identified two major network components (DefRC and DevRC), in which the defense responses 
and development processes were enriched, respectively. Interestingly, the gene expression relationship between 
DefRC and DevRC was positively correlated under B. cinerea infection condition but negatively correlated under 

http://systbio.cau.edu.cn/BN/index.php
https://marketplace.gephi.org/plugin/sigmajs-exporter/
http://shiny.rstudio.com/


www.nature.com/scientificreports/

9Scientific Reports | 6:19149 | DOI: 10.1038/srep19149

G. orontii infection condition. Several proteins involved in the interactions connecting DefRC and DevRC were 
found to participate in the regulation of the trade-off between plant immunity and development. Finally, we noted 
an enrichment of auxin-related proteins involved in the interactions connecting DefRC and DevRC, which might 
explain the distinct relationships between DefRC and DevRC under different conditions. Taken together, we hope 
that the current comparative analysis on plant immune responses to pathogens with different lifestyles will help 
to improve our systems understanding of plant immunity.

Materials and Methods
Data Collection and Preprocessing.  Two series of transcriptional data were downloaded from the 
NCBI Gene Expression Omnibus (GEO), and the corresponding GEO accession numbers were GSE5686 and 
GSE2964255. The raw data of GSE5686 were normalized using the Bioconductor R package affy56. Repeated sam-
ples for GSE5686 were averaged to obtain the final expression value. For GSE29642, we directly downloaded 
the normalized data from the GEO database. For the two normalized gene transcriptional datasets, probe sets 
were mapped to their corresponding gene symbols, and the expression values of replicated probes of the same 
gene symbol were averaged. To assemble the protein-protein interaction network, 16,797 experimentally verified 
PPIs covering 6,640 different proteins were collected from the TAIR Interactome 2.029, IntAct30 and BioGRID31. 
Arabidopsis TFs were downloaded from the Plant Transcription Factor Database (PlantTFDB), which is a public 
database devoted to identifying and categorizing all plant genes involved in transcriptional control44. Arabidopsis 
hormone-related genes, which are defined as genes participating in the biosynthesis, metabolism, transport, per-
ception or signaling pathways of plant hormones, were gathered from the Arabidopsis Hormone Database 2.0 
(AHD2.0)43.

Plant defense-related genes were collected in two ways. The major way was analyzing gene ontology anno-
tation57. We downloaded GO annotation files for Arabidopsis from the FTP site of TAIR (ftp://ftp.arabidopsis.
org/home/tair/Ontologies/). Then, for each record in the annotation file, if the description of a gene met the 
following two criteria, we selected the gene as a plant defense-related gene. First, the record should use experi-
mental evidence codes, including Inferred from Experiment (EXP), Inferred from Direct Assay (IDA), Inferred 
from Physical Interaction (IPI), Inferred from Mutant Phenotype (IMP), Inferred from Genetic Interaction (IGI), 
and Inferred from Expression Pattern (IEP). Second, the GO term should contain biological process keywords, 
including “systemic acquired resistance”, “systemic resistance”, “immune” and “defense response to fungus”. The 
other method used to collect plant defense-related genes was literature retrieval. We first searched the literature 
in PubMed with the keywords “Botrytis cinerea” and “powdery mildew”; then, we selected plant defense-related 
genes through literature reading.

Determination of PCC Threshold.  Many methods exist to determine a PCC threshold, including the use 
of an arbitrary cutoff 58, keeping the top 1% of correlations59, and determining cutoffs based on correlation graph 
structure60,61 or statistical significance62. To keep biologically relevant interactions, we set different cutoffs for the 
two sets of transcriptional data. First, we employed PCC to measure expression correlations between two inter-
acting proteins. PCC was calculated by the following formula:
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where X and Y are the log-transferred gene expression values of two interacting proteins, and N represents the 
number of time points in the corresponding transcriptional data. Then, we randomly permuted transcriptional 
data for the 5,598 proteins across different time points and calculated PCCs for each permutation to achieve a 
random PCC distribution. Finally, we sorted the random PCC distribution and chose the PCC value at the end of 
the top 10% highest (lowest) PCCs as the threshold of positively (negatively) correlated interactions.

Network Visualization and Analysis.  Cytoscape (version 3.0.2) and its plugins were employed to visualize 
the network constructed in this study and perform network analysis63. The Cytoscape plugin Network Analyzer 
was used to conduct network topological analysis and extract connected components. Network modules from 
the two conditional PPI sub-networks were identified using the MCL package (http://micans.org/mcl/), an imple-
mentation of the MCL algorithm39. Compared with other existing clustering algorithms, MCL is superior for the 
extraction of complexes from interaction networks64. The recommended inflation parameter of 1.8 was adopted. 
Modules with fewer than three proteins were discarded from our analysis.

Evaluation of Evolutionary Rate.  To estimate the evolutionary rate of hubs, we compared orthologous 
sequences between Arabidopsis and C. papaya. First, we downloaded the protein sequences and coding sequences 
(CDS) of Arabidopsis and C. papaya from the PLAZA database65. Then, the InParanoid algorithm (http://inpar-
anoid.sbc.su.se/cgi-bin/index.cgi) was used to identify the orthologs of Arabidopsis hub proteins in C. papaya. 
Finally, for each pair of orthologs, we calculated dN/dS using the yn00 program in the PAML package66,67. The 
dN/dS ratio is employed to infer the direction and magnitude of natural selection acting on protein-coding genes. 
A dN/dS ratio of 1.0 indicates neutral evolution, a lower ratio (dN/dS <  1.0) indicates purifying (negative) selec-
tion, and a higher ratio (dN/dS >  1.0) indicates positive selection.

Differential Expression Analysis.  A gene was identified as differentially expressed if its expression 
value exhibited a greater than 1.2-fold change between the spore-infected (treatment) and mock-treated (con-
trol) plants at any time point. Normalized transcriptional data were used to identify differential expression 
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genes. For better comparisons, the two groups of time-course transcriptional data were divided into three 
stages based on the life cycles of G. orontii and B. cinerea. The early stage included microarray data at 6 hour 
from GSE5686 and the first two time points from GSE29642. The middle stage of infection was composed of 
microarray data at 12 hour to 24 hour from GSE5686 and 6 hour to 20 hour from GSE29642. The remaining 
microarray data were defined as the late stage of infection. A gene was recognized as differentially expressed 
in a certain infection stage if it was differentially expressed at any of the time points included in this stage. The 
direction of a differentially expressed gene in each stage was determined by the majority vote of its constituent 
time points.

Functional Enrichment Analysis.  GO enrichment analyses for modules predicted from MCL, the com-
mon response network and the network components were conducted using BiNGO 3.0.2 in Cytoscape with the 
“GO Biological Process” category68. Using the whole annotation as the reference set, overrepresented terms were 
selected with a significance level of 0.05 (hypergeometric test) after Benjamini-Hochberg false discovery rate 
correction.
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