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Prediction of outer membrane proteins by
combining the position- and composition-based
features of sequence profiles†

Renxiang Yan,*a Jun Lin,a Zhen Chen,b Xiaofeng Wang,b Lanqing Huang,a

Weiwen Caia and Ziding Zhangb

Locating the transmembrane regions of outer membrane proteins (OMPs) is highly important for deciphering

their biological functions at both molecular and cellular levels. Here, we propose a novel method to

predict the transmembrane regions of OMPs by employing the position- and composition-based

features of sequence profiles. Furthermore, a simple probability-based prediction model, which is

estimated by the secondary structures of structurally known OMPs, is also developed. Considering that

these two methods are both effective and well complementary, we integrate them into a method called

TransOMP, which is also capable of identifying OMPs. Furthermore, we develop an OMP identification

measure I_CScore by considering transmembrane regions by TransOMP and secondary structural

topology by SSEA-OMP. Our methods were benchmarked against state-of-the-art methods and

assessed in the genome of Escherichia coli. Benchmark results confirmed that our methods were

reliable and useful. Meanwhile, we constructed an OMP prediction web server, which can be used for

OMP identification, transmembrane region location, and 3D model building.

1 Introduction

Integral membrane proteins embed in the cellular membranes
of diverse organisms and perform a variety of biologically
important functions.1 Depending on the secondary structure
in the transmembrane regions as well as physicochemical
characteristics and localization, integral membrane proteins
are grouped into two main categories, i.e. a-helical and b-barrel
membrane proteins. The b-barrel membrane proteins are frequently
found in the outer membrane of gram-negative bacteria, mito-
chondria and chloroplasts, therefore, they are also commonly
known as outer membrane proteins (OMPs). Currently, except
for an Escherichia coli OMP (PDB entry: 2J58) containing the
a-helical transmembrane region,2 the remaining OMPs are
b-barrel membrane proteins. In fact, OMPs are of great interest
in the biological community considering that they play a wide
variety of biological roles in cells, including enzymes, transporters
and membrane-embedded channels.

Given the difficulty in structural determination of OMPs
through wet experiments, computational methods to identify puta-
tive OMPs in the sequenced genomes and to locate their trans-
membrane regions have become increasingly important in recent
years. Currently, there exist two major tasks for the computational
study of OMPs. One is to identify OMPs from genomes, and the
other is to locate transmembrane regions of OMPs. By now, B20
non-redundant OMP structures have been determined, which allow
the development of special computational tools for OMPs. In
reality, a few bioinformatics tools have been elegantly designed in
the research community. Of them, several methods were developed
by statistical analyses based on the amino acid composition.3–7

C-terminal patterns, hydrophobicity and amphipathicity of b-strands
were also used to predict OMPs.8,9 The machine learning algorithms
(e.g. Neural Network and Support Vector Machine) were also
employed to construct OMP prediction methods.10–13 Interestingly,
hidden Markov models were commonly used by several groups.
For example, Bagos and co-workers trained hidden Markov
models using structurally known OMPs to locate transmembrane
regions.14,15 The PROFtmb method proposed by the Rost group
uses a profile-based hidden Markov model.16 HHomp identifies
OMPs by HMM–HMM matching.17 In our previous work, we
proposed a method called SSEA-OMP to identify OMPs by using
secondary structure element alignment.18

The past few decades have witnessed a series of studies19–29

and a few bioinformatics algorithms3,4,6–9,13–15,17,30–36 for OMP
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prediction, however, some critical questions remain to be
addressed. For example, are there any new methods for OMP
prediction? How reliable are the modelled structures for OMPs
by classical fold recognition methods? What is the mechanism
by which OMPs insert and fold in a membrane? In this article, we
make an attempt to answer one of the questions by developing
a novel OMP prediction method based on the position- and
composition-based features of sequence profiles.

2 Materials and methods
2.1 Benchmark dataset

The benchmark datasets were constructed with the utilization of
information in the PDB,37 UniProtKB38 and OPM39 databases.
Firstly, we extracted OMPs, which are structurally determined
and contain transmembrane region annotation in UniProtKB. A
set of protein entries was collected by scanning the PDB database
with the keyword ‘outer membrane protein’. The PDB entries were
mapped to UniProtKB accession names and the corresponding
annotations were extracted. Only the proteins containing the
‘transmembrane b-strand’ annotation by UniProtKB were retained.
Meanwhile, the obtained proteins were split into chains. We
manually checked each chain and removed non-typical b-barrel
chains (e.g. 1EK9A, 1IMOA, 3LDTA and 1WP1A). The remaining
proteins were further filtered by 30% identity. In this procedure,
we got 14 non-redundant OMPs. We named these 14 proteins the
OMP14 dataset. Secondly, we collected OMPs from the OPM
database. We BLASTed all b-barrel transmembrane proteins of
the OPM database against the sequences in the OMP14 dataset,
and there exist 14 b-barrel transmembrane proteins of the OPM
database that were not homologous with the OMP14 dataset.
Therefore, we compiled these 14 OMPs into a new dataset called
ADD14. It should be pointed out that the transmembrane regions
of the ADD14 proteins were not annotated in the UniProtKB
dataset. The transmembrane regions of these proteins were
annotated based on the membrane boundaries obtained from
the OPM database. Both OMP14 and ADD14 datasets are
available in the ESI,† S1.

2.2 Profile composition-based features (PCF)

In this work, composition-based features of sequence profiles
are calculated by the procedure consisting of three main steps:
(i) sequence profile generation; (ii) fragment profile extraction,
and (iii) k-spaced residue pair composition construction.

(i) Sequence profile generation. To obtain the sequence
profiles, the query sequence is iteratively threaded through the
NCBI NR database for 3 repeats with an e-value cutoff of 0.001 for
collecting multiple sequence alignments (MSAs). The Henikoff
weight scheme40 is used to reduce the redundancy of MSAs in the
position-specific frequency matrix (PSFM profile) and position-
specific scoring matrix (PSSM profile) constructions.

(ii) Fragment profile extraction. To get the fragment profiles
of the target residue, a sliding window containing 2n + 1 residues
long (i.e. window size = 2n + 1) fragment profiles centered
at the target residue is excised from the sequence profiles.

Both PSFM and PSSM fragment profiles are excised for the
encoding construction. Based on the OMP14 dataset, different
window sizes in the range of 1 to 41 were tested. The optimal
window size was determined by the Leave-One-Out (LOO)
procedure. In each step of the LOO test, one protein is the test
target and the remaining 13 proteins are used as the training
set. We tested different window sizes in the 13 training proteins.
The obtained optimized window size of the 13 training proteins
was applied to the target protein. According to our preliminary
computational experiments, the sizes of windows for PCF-based
encodings were consistently set as 11 in this study.

(iii) k-Spaced residue pair composition construction. The
encoding of PCF for the target residue is constructed by using
the excised fragment profiles. Taking a fragment profile with N
residues as an example, it is an N � 20 matrix of twenty amino
acid occurrence probabilities and it can be represented as
a[i, j ], where i denotes the position of the target residue in
the fragment and j stands for the occurrence probability of the
jth amino acid. To calculate the amino acid pair of AmAn with
k-spaced (i.e. pairs that are separated by k any other amino
acids), we use a similar way as Chen et al.,41 in which the
encoding was employed for the classification of 5 integral
membrane protein types. The equation used here is

AmAn ¼
1

N � k� 1

XN�k�1
i¼1

minða½i;m�; a½i þ kþ 1; n�Þ (1)

where N denotes the window size of the fragment profile and k
represents that the k-spaced residue pairs are taken into
account. There are 20 amino acids and 400 amino acid pairs
in total. Therefore, the dimensional number of features for

each specific k is 400. Amino acid pairs for k ¼ 0; 1; . . . ;
N � 1

2
are jointly considered. It is very time-consuming and the
performance cannot be improved if k is larger than 5. The
maximum value of k is set to not larger than 5. We use two sets
of profiles (i.e. PSFM and PSSM) to build the features and train
the models. Considering that some elements of the PSSM
profile are negatives, we employ two strategies for the transforma-
tions. The first strategy is very simple and we directly set the
element value of the PSSM profile to 0 if it is negative; in the
second strategy, all PSSM profile elements are scaled to the range
of 0–1 by using the standard logistic function as

1

1þ e�x
(2)

where x is the element value of the PSSM profile. In total, there
are three encodings, i.e. PCFF for the calculation of k-spaced
residue pairs using the PSFM profile, PCFL for the calculation
of k-spaced residue pairs using the PSSM profile by setting
negative values to zeros, and PCFE for the calculation of
k-spaced residue pairs using the PSSM profile by scaling the
element values to the range of 0–1 using the standard logistic
function. The differences between the encodings used here and
those by Chen et al.41 are that we use two sets of profiles (i.e. PSFM
and PSSM) and two strategies for PSSM transformations whereas
Chen et al. only used the PSSM profile by setting negative values
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to zeros. In this work, we will show that the PSFM is more
informative in the OMP transmembrane region prediction than
PSSM and scaling the PSSM profile by using the standard
logistic function (i.e. eqn (2)) also generates higher Mcc values
than that by simply setting negative values to zeros.

2.3 Profile position-based features (PPF)

The procedure to generate PPF-based features is similar to that
of PCF, including sequence profile generation, fragment profile
extraction and encoding construction. For a sliding window
containing the (2n + 1) fragment profile with the target residue
in the center, there are (2n + 1) � 20 features. The optimal
window sizes for PPF-based encodings were assigned as 35. The
optimization process of the window sizes in PPF-based methods
is the same as that in PCF-based methods. Again, the two
transformations are also used to scale the elements of the PSSM
profile. Similarly, there are also three types of resulting features,
i.e. PPFF for building features using the PSFM profile, PPFL for
building features using the PSSM profile by setting negative
values to zeros, and PPFE for building features using the PSSM
profile by scaling the element values to the range of 0–1 using
the standard logistic function. The difference between the
encoding construction of PPF and that used in PCF is that the
profile values are directly used as feature vectors in PPF whereas
the amino acid pairs are counted in PCF.

2.4 Secondary structure-based prediction

The transmembrane regions of OMPs are strongly relevant to
the secondary structure. Therefore, we also analyze and use the
predicted secondary structure by PSIPRED, which is a Neural
Network-based method.42 The binary checkpoint profile generated
by PSI-BLAST43 is fed to PSIPRED42 and the output possibilities
for secondary structures are employed to predict the trans-
membrane regions of OMPs. The possibility for the target residue
in the transmembrane region is defined as

P(M|SS) = P(E)P(M|E) + P(C)P(M|C) + P(H)P(M|H)
(3)

where P(M|SS) is the possibility of the target residue in the
transmembrane region by using secondary structure informa-
tion; P(E), P(C) and P(H) are the possibilities of the target
residue that are predicted as strand, helix and coil by PSIPRED;
P(M|E), P(M|C) and P(M|H) are the conditional possibilities of
the target residue in the transmembrane region if the secondary
structures are strand, coil and helix, respectively. P(M|E), P(M|C)
and P(M|H) were estimated by the structurally known OMP14
dataset and the corresponding values are shown in Table 1.
When the OMP14 dataset was tested, 13 training proteins were
used to estimate the probabilities and 1 target protein was tested
in each run of cross-validation. In Table 1, the probabilities in
any row (i.e. any secondary structure type) sum up to 1. Similarly,
the equation for the target residue in the non-transmembrane
region is defined as

P(BM|SS) = P(E)(1 � P(M|E)) + P(C)(1 � P(M|C))

+ P(H)(1 � P(M|H)) (4)

where P(BM|SS) is the possibility of the target residue in the
non-transmembrane region by using secondary structure infor-
mation; other terms are defined in eqn (3). Finally, the predic-
tion score for the target residue located in the transmembrane
region by using the secondary structure information is

SS_pred = P(M|SS) � P(BM|SS) = P(E)P(M|E) + P(C)P(M|C)

+ P(H)P(M|H) � P(E)(1 � P(M|E))

+ P(C)(1 � P(M|C)) + P(H)(1 � P(M|H))

= P(E)(2P(M|E) � 1) + P(C)(2P(M|C) � 1)

+ P(H)(2P(M|H) � 1) (5)

where SS_pred is the prediction score and other terms are
defined in eqn (3) and (4).

2.5 Support vector machine learning and the TransOMP
method

The encodings can be transformed to a prediction score via
support vector machine learning (SVM). The SVM package used
in this work is svmlight (svmlight.joachims.org/). The overall
performance of various encoding-based methods is assessed by
the Leave-One-Out (LOO) procedure. In each step of the LOO
test, 1 protein is selected as the test target and the remaining 13
proteins are used as the training set. This process is iteratively
performed 14 times for all OMPs in the OMP14 benchmark.
When we applied SVM learning, linear, polynomial, RBF, and
sigmoid kernel functions of SVM were tested and we selected
the linear kernel to optimize the prediction. The top and
complementary encodings are selected to construct the Trans-
OMP method, which is a weighted average model by combining
PCFF, PCFE, PPFL and SS_pred as

T CScoreðiÞ ¼ w1PCF
F þ w2PCF

E þ w3PPF
L þ w4SS pred

w1 þ w2 þ w3 þ w4

(6)

where T_CScore(i) is the predicted confident score of TransOMP
for the residue in the position i of the sequence. The encodings of
PCFF, PCFE, PPFL and SS_pred are calculated for the target residue
i. w1, w2, w3 and w4 are weights of PCFF, PCFE, PPFL and SS_pred.
Here, w1, w2, w3 and w4 are empirically set to 0.3, 0.25, 0.25
and 0.2 to balance the terms. The flowchart for constructing
TransOMP is depicted in Fig. 1. Furthermore, we combine
SSEA-OMP and TransOMP to identify OMPs. SSEA-OMP discrimi-
nates OMPs by using secondary structure alignment and we have
shown that its performance is comparable to other existing
methods in our previous work.18 Briefly, SSEA-OMP discriminates

Table 1 The observed probabilities of a residue to be located in transmem-
brane (non-transmembrane) in the three types of secondary structures

Typea Transmembrane Non-transmembrane

b-Strand (E) 0.700 0.300
Coil (C) 0.098 0.902
a-Helix (H) 0.000 1.000

a ‘E’ denotes a strand element, ‘C’ stands for a coil element, and ‘H’
represents a helix element.
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OMPs by searching the query sequence against OMP and non-OMP
databases. Meanwhile, the maximal SSEA (secondary structure
element alignment) similarity score between OMPs (non-OMPs)
are recorded (i.e. SSEAmax_omp and SSEAmax_non_omp). In the SSEA
algorithm, the secondary structural string for each sequence is
converted into secondary structure elements such that ‘H’ repre-
sents a helix element, ‘E’ denotes a strand element, and ‘C’ stands
for a coil element. Thus, the predicted secondary structural string
was shortened and the length of each element was retained for the
scoring of SSEA. The alignment score of SSEA between two
secondary structure elements with lengths Li and Lj is defined as

where min(Li, Lj) stands for the minimal length between Li and
Lj. The total alignment score is further divided by the average
length of these two sequences to obtain a normalized similarity
score. For details of the SSEA algorithm one can refer to our
previous work.18 It should be mentioned here that the SSEA-OMP
method is for OMP identification. For a query sequence, the
prediction score DSSEA is calculated as

DSSEA = SSEAmax_omp � SSEAmax_non_omp (8)

Here, we use the same scheme as mentioned previously to
construct the library of the SSEA-OMP method, i.e. 486 cluster
consensus sequences, which were derived from 23 structurally
solved OMPs collected by the Söding group, are used as the OMP
database, and 941 non-OMPs collected by Gromiha et al.31 are
used as the non-OMP database. For a query sequence, TransOMP
determines whether it is OMP using the following equation:

TransOMP Score ¼
XN
i¼1

maxðT CScoreðiÞ; 0Þ (9)

where T_CScore(i) is defined in eqn (6) and we use
max(T_CScore(i),0) to ensure that only transmembrane regions

are calculated (i.e. positive values). N is the length of the target
protein. Furthermore, we propose an OMP identification con-
fident score (I_CScore) by combining TransOMP_Score and
DSSEA as

I CScore ¼ aTransOMP Score

N
þ DSSEA (10)

DSSEA is calculated using eqn (8). To balance the two
terms, TransOMP_Score is normalized by the length of the
target protein (N). a is empirically set to 0.3 to optimize
prediction.

2.6 Refinement of transmembrane region prediction

The refinement was developed by the observation that transmem-
brane regions are segments, and the length of each segment is
more than 2 residues. We designed the following steps to refine the
prediction. Firstly, for one or two residues predicted to be located
in the transmembrane region, we transform their states to non-
transmembrane if the six residues around the �3 positions
(i.e. neighbouring 6 residues) locate in the non-transmembrane
region (Fig. 2A and B). Meanwhile, the prediction scores for the
(two) residues are reset to the average of the neighbouring
6 residues. Secondly, for one (two) residue(s) predicted to be located
in the non-transmembrane region, if its 5 neighbouring residues
locate in the transmembrane regions, the states of the (two)
residues will be transformed into the transmembrane region
(Fig. 2C and D). Similarly, the prediction scores of the (two) residues
are reset to the average of the neighbouring 5 transmembrane
residues. This refinement process can correct a few obvious errors
by prediction. For example, when we applied the refinement
process to the TransOMP method in the OMP14 dataset, 2 false
positives and 4 false negatives were corrected. Note that the
refinement is quite simple and further optimization may result
in an improved performance.

Fig. 1 Flowchart of the TransOMP method.

Alignment Score ¼

min Li;Lj

� �
Match between two identical elements

0:5�min Li;Lj

� �
Match between a-helix=b-strand and coil

0 Match between a-helix and b-strand

8>>><
>>>:

(7)

Method Molecular BioSystems

Pu
bl

is
he

d 
on

 1
3 

M
ar

ch
 2

01
4.

 D
ow

nl
oa

de
d 

by
 F

U
Z

H
O

U
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
14

/0
3/

20
14

 0
1:

44
:3

8.
 

View Article Online

http://dx.doi.org/10.1039/C3MB70435A


This journal is©The Royal Society of Chemistry 2014 Mol. BioSyst.

2.7 Performance assessment

When the test is performed over all proteins in the prediction,
the overall performance of different methods is evaluated with
respect to four parameters: accuracy (Ac), sensitivity (Sn), specificity
(Sp) and Matthew correlation coefficient (Mcc). The transmembrane
(non-transmembrane) residues are considered positives (negatives).
These parameters are defined as

Ac ¼ tpþ tn

tpþ fnþ tnþ fp
(11)

Sn ¼ tp

tpþ fn
(12)

Sp ¼ tn

tnþ fp
(13)

Mcc ¼ tp� tn� fp� fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtpþ fpÞðtpþ fnÞðtnþ fnÞðtnþ fpÞ

p (14)

where tp, fp, fn and tn denote the number of true positives,
false positives, false negatives and true negatives, respectively.
The performance of OMP identification can be measured using
a receiver operating characteristic (ROC) curve. The ROC curve plots
the true-positive rate (instances) as a function of false-positive
rate (instances) for all possible thresholds of prediction scores
by various methods.

3 Results and discussion
3.1 The performance of transmembrane region prediction

Based on the OMP14 dataset, the overall performance of different
OMP transmembrane region prediction methods is assessed
using the LOO procedure as described in the Materials and
methods section. The prediction results of the transmembrane
regions for various methods are summarized in Table 2. Mcc is
the most comprehensive parameter to measure the prediction
performance. Of the 6 encoding-based methods, PCFF obtains
the highest Mcc value (Mcc = 0.641). PCFE and PPFL are ranked
2nd and 3rd. The top methods, PCFF, PCFE, PPFL, and SS_pred

were selected to construct the TransOMP method according to the
fact that these methods can generate Mcc values higher than 0.600
although the benchmark set has already been filtered by 30%
sequence identity. We also tried to include other encodings
(e.g. PPFE), but the performance was not improved. Although both
PCF- and PPF-based methods were inferred from sequence pro-
files, PCF-based methods should not be considered redundant to
PPF-based methods, since PPF encoding counts the 20 amino acid
occurrence probabilities whereas PCF counts the residue pair
composition. In order to examine the complementary encoding
among the four encodings, we generated a Venn diagram using R
package44 based on their prediction results (Fig. 3). As shown in
Fig. 3, the results predicted by the three encoding-based methods
are well complementary. For example, PCFF, PCFE, PPFL and
SS_pred methods correctly distinguish 17, 25, 95 and 186 residues
that cannot be identified by other three methods, respectively.
Although the SS_pred predictor generated the lowest Mcc value
among the four encoding-based methods, it was most comple-
mentary to other methods according to Fig. 3.

Fig. 2 Refinement of TransOMP prediction. Transmembrane and non-transmembrane regions are coloured in blue and white, respectively.

Table 2 Performance of transmembrane region prediction of various
methods on the OMP14 dataset

Method TPa TN FP FN Ac Sn Sp Mcc

Encoding-based methods
PCFF 1607 2977 349 590 0.829 0.731 0.895 0.641
PCFE 1585 2991 335 612 0.829 0.721 0.899 0.638
PPFL 1595 2982 344 602 0.828 0.725 0.896 0.638
PPFE 1591 2918 408 606 0.816 0.724 0.877 0.613
SS_pred 1603 2887 439 594 0.812 0.729 0.868 0.605
PCFL 1564 2919 407 633 0.812 0.712 0.877 0.602
PPFF 1530 2874 452 667 0.797 0.696 0.864 0.572

Comparison with well-established methods
TransOMP 1691 2982 344 506 0.846 0.769 0.896 0.676
PROFTMB 1921 2736 590 276 0.843 0.874 0.822 0.685
PRED-TMBB 1483 3078 248 714 0.825 0.675 0.925 0.633
TMBpro 1689 2595 731 508 0.775 0.768 0.780 0.541
TMBETAPRED-RBF 1379 2995 331 818 0.792 0.628 0.901 0.559

a All residues of the OMP14 dataset were used to count true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) measures.
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The TransOMP method is a weighted average model of the
four encodings using eqn (6). As shown in Table 2, Ac, Sn and
Sp scores of TransOMP predictions are 0.846, 0.769 and 0.896,
respectively, which result in an overall Mcc value of 0.676. This
Mcc value is approximately 5% higher than the best individual
encoding-based prediction. Additionally, we also tested the
TransOMP method using the ADD14 dataset (Table 3). The
TransOMP method was trained using the OMP14 dataset and all
proteins in the ADD14 dataset are not homologous with any
protein in the OMP14 dataset (BLAST e-value 4 0.01). TransOMP
got the similar performance in both ADD14 and OMP14 datasets
(Mcc = 0.692 versus 0.676).

3.2 Comparison with well-established methods

We relied on the OMP14 and ADD14 datasets to benchmark
TransOMP against state-of-the-art transmembrane region prediction
methods. The proteins of OMP14 and ADD14 datasets were directly
submitted to PRED-TMBB, TMBpro and TMBETAPRED-RBF web
servers. PROFTMB program was installed in our local computer.
These programs represent typical and publicly available
OMP transmembrane region prediction methods. As shown
in Table 2, the TransOMP method can generate a higher Mcc
value than the other methods. But this does not mean that
TransOMP will replace others. In fact, the methods tested here
are very diverse. For example, PRED-TMBB was trained based

on HMM at the sequence level and its prediction results were
significantly different from those of our method (t-test p-value
o 2.2 � 10�16). At least, all methods benchmarked here can
generate reasonable prediction performance. Therefore, they
should be useful in the real application. In fact, the methods
developed by some groups are very different. Regarding the
HMM-based method PRED-TMBB, which was developed by
Bagos et al., for instance, its design of topology of the HMM,
number of states and their connection need a priori fixed by
taking insightful knowledge of known OMPs. Moreover, the
development of consensus methods based on these methods
can improve the prediction. There are slight differences in the
predictions in the datasets of OMP14 and ADD14. The quality
of these predictions should be further assessed through com-
puting their confidence intervals. Confidence intervals are
computed using the common assumption of a normal distribu-
tion by the following equation:

m� Z
SDffiffiffi
n
p ; mþ Z

SDffiffiffi
n
p

� �
(15)

where m and SD are mean and standard deviation of the
samples, n is the sample size, and Z is the critical value and
Z equals to 1.96 at a 95% confidence level. The mean (m) and
standard deviation (SD) of sensitivity and specificity scores
were calculated by bootstrap resampling for 1000 repeats. The
confidence interval values estimated in two datasets are listed
in Tables 4 and 5. The sensitivity and specificity confidence
intervals of the TransOMP method at the 95% level are [0.806,
0.829] and [0.863, 0.881] in the OMP14 dataset. Similarly, the
sensitivity and specificity confidence intervals of the TransOMP
method at the 95% level are [0.809, 0.828] and [0.866, 0.886] in
the ADD14 dataset. Generally speaking, the confidence interval
is judged to be better than another if it leads to intervals whose
lengths are typically shorter. The shortest lengths of sensitivity
confidence intervals in the two datasets are PROFTMB.

Fig. 3 Analysis of the complementarity of encoding-based predictors.

Table 3 Performance of transmembrane region prediction of various
methods on the ADD14 dataset

Methoda TP TN FP FN Ac Sn Sp Mcc

TransOMP 1512 2306 334 335 0.850 0.818 0.873 0.692
PROFTMB 1746 1916 724 101 0.816 0.945 0.725 0.663
PRED-TMBB 1321 2325 315 526 0.812 0.715 0.880 0.609
TMBpro 1627 2133 507 220 0.837 0.880 0.807 0.678
TMBETAPRED-RBF 1372 2286 354 475 0.815 0.742 0.865 0.615

a All residues of the ADD14 dataset were used to count true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) measures.

Table 4 Confidence intervals at 95% level for sensitivity and specificity
estimated in the OMP14 dataset

Method Sensitivity Specificity

TransOMP [0.806, 0.829] [0.863, 0.881]
PROFTMB [0.867, 0.881] [0.815, 0.828]
PRED-TMBB [0.838, 0.908] [0.964, 0.987]
TMBpro [0.789, 0.996] [0.650, 0.844]
TMBETAPRED-RBF [0.731, 0.763] [0.841, 0.885]

Table 5 Confidence intervals at 95% level for sensitivity and specificity
estimated in the ADD14 dataset

Method Sensitivity Specificity

TransOMP [0.809, 0.828] [0.866, 0.880]
PROFTMB [0.939, 0.950] [0.716, 0.734]
PRED-TMBB [0.704, 0.725] [0.874, 0.887]
TMBpro [0.873, 0.888] [0.800, 0.816]
TMBETAPRED-RBF [0.732, 0.753] [0.858, 0.872]
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3.3 Large-scale benchmark of OMP identification

It is also valuable to investigate the performance of TransOMP in
OMPs identification. In this work, we use the R-dataset, which is
compiled by the Söding group, and the dataset consists of 2164
OMPs and 5000 non-OMPs. To remove homologous sequences,
we searched the 2164 OMPs against the 14 structurally known
proteins in the OMP14 dataset. We removed 128 sequences that
have better significance than the BLAST e-value of 0.01 with the
sequences in the OMP14 dataset. Finally, 2036 OMPs and 5000
non-OMPs were retained. The sequences in the R-dataset are
not homologous with the 23 structurally known OMPs, which
were used to derive 486 cluster consensus sequences,17 at
the sequence level. When tested on the R-dataset, the PSI-BLAST
e-value of 0.01 was used as the criterion to remove homologous
sequences with the 941 non-OMPs. The performance of SSEA-
OMP and TransOMP in OMP identification was compared via
ROC analysis. Because the performance at low false positive
rates is more important in real-world application, we paid more
attention to compare the performance of different methods at
o1% false positive rates (i.e. 50 false positive instances). SSEA-
OMP correctly recognized 1215 OMPs before including 5 false
positives, whereas TransOMP can detect 1099 OMPs (Table 6
and Fig. 4). Although the performance of TransOMP is not as
good as that of SSEA-OMP, the two methods are well comple-
mentary and combining them can result in a higher accuracy
prediction. As shown in Table 6 and Fig. 4, combining two
methods (i.e. I_CScore) can identify more OMPs at the same
false positive instances. For example, the I_CScore method can

detect 1343 and 1450 OMPs before including 5 and 50 false
positive instances, which are higher than the numbers identi-
fied by SSEA-OMP and TransOMP. Here, we do not list other
OMP identification methods in Table 6, because we have
proved that SSEA-OMP is comparable to existing methods in
our previous work.18

3.4 Proteome-wide OMP identification in Escherichia coli

To confirm the performance of the I_CScore measure in genome-
scale application, it was used to identify the ‘putative’ and
‘probable’ OMPs in the E. coli proteome. The whole proteome
of E. coli K-12,45 which contains 4126 protein sequences,
was downloaded from the NCBI database. In-depth manually
annotating the OMPs in the E. coli proteome is critically
essential for analyses. In our previous work,18 we collected a
known OMP dataset consisting of 120 proteins from the E. coli
proteome by retrieving the annotations from NCBI, PSORTdb46

and OMPdb47 databases. In this work, we further scanned the
remaining sequences against the UniProtKB database and
found 6 multi-location proteins (gi numbers are 170080821,
170080837, 170082168, 170082515, 170081952 and 170082684)
whose subcellular locations are annotated as ‘cell outer
membrane’ plus ‘other places’ (e.g. lipid-anchor or peripheral
membrane). To validate whether they are OMPs, we submitted
the 6 sequences to SPARKS-X,48 which represents a typical
approach of the fold recognition method for protein structure
prediction. The models of the two proteins, 170081952, known
as ‘outer membrane-bounded periplasmic space’, and
170080837, known as ‘outer-membrane lipoprotein LolB’, have
the characteristic shape of antiparallel b-strand barrels. These
two proteins are very likely to be OMPs and we added them to
the dataset. Finally, a database of known OMPs, consisting of
122 proteins, was constructed. The 4126 sequences were
directly fed into SSEA-OMP and TransOMP algorithms. The final
prediction result was determined by the I_CScore measure.
There are 118 proteins predicted to be potential OMPs with a
false positive rate control of 1% (ESI,† S2).

Among the 118 detected OMPs, 77 proteins have been
included in the known E. coli OMP dataset. Therefore, these

Table 6 Comparison of receiver operator characteristics table (r50 false
positives) for different methods

Receiver operator characteristics (r50 false positivesa)

5 10 15 20 25 30 35 40 45 50

I_CScore 1343 1385 1401 1405 1413 1418 1421 1424 1437 1450
SSEA-OMP 1215 1260 1291 1314 1316 1329 1350 1368 1385 1405
TransOMP 1099 1203 1213 1222 1225 1227 1231 1231 1233 1234

a False positives correspond to those non-OMPs predicted as OMPs.

Fig. 4 Comparison of receiver operator characteristic curves (r50 false positives) for different methods.
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77 predicted OMPs should be regarded as true positives with
high confidence. In fact, 74 out of the 77 proteins are ranked
among top 100 by the I_CScore. In the remaining 41 proteins,
there exist 19 proteins whose subcellular localizations are
annotated as ‘unknown’ or ‘this protein may have multiple
localization sites’ in the PSORTdb database. These may be
potential OMPs that have not been previously discovered. For
example, protein 170080707, annotated as ‘unknown’ by the
PSORTdb database and ‘the displayed sequence is further
processed into a mature form’ in the UniProtKB database, was
predicted to be an OMP like b-barrel structure by SPARK-X. Thus,
protein 170080707 is very likely to be an OMP. When the PSORTdb
database was further searched, the remaining 22 hits are clearly
annotated as non-OMPs in terms of subcellular localization informa-
tion, suggesting that they are very likely to be false positives. Among
the 22 proteins, 7 are annotated as ‘Cytoplasmic Membrane’ and
this may show that these proteins have very similar characteristics to
OMPs. In fact, it is estimated that 97–98% protein sequences in the
E. coli genome are non-OMPs, therefore, at 1% false positive rate, it
is reasonable to have 30–40 false positives.

In summary, there are 77 true positives with high confidence,
19 possible true positives and 22 false positives identified by
TransOMP at 1% false positive rate. In order to reduce the false
positives, we may resort to other bioinformatics tools. For
example, false positives could be further reduced by employing
a signal peptide predictor according to the fact that most
OMPs have a signal peptide.46 Alternatively, we may choose the
threshold value at a higher confidence level, but the identified
true positives will be reduced accordingly. Additionally, to
maximize the performance of SSEA-OMP and TransOMP, a
regularly updated library which covers all sequence/structure
spaces of known OMPs is highly desired.

3.5 Top ranked amino acid pairs in the evolutionary profile

It is useful to know the ‘important’ amino acid pairs of the
composition-based encodings, in which some conserved and
functional motifs may be found in OMP sequence families. The
information gain algorithm that was implemented in the Weka
package49 was employed to quantify the relative importance of
features in the most effective encoding (i.e. PCFF). Based on the
OMP14 dataset, the top 20 k-spaced amino acid pairs are listed
in Table 7. These residue pairs are the most informative in the
prediction that was identified by the Weka program. We also
list the occurrence probability of each amino acid in the top
100 ranked k-spaced pairs (Table 8). As could be seen from the
data, the top 5 amino acids are P, S, E, Q and D. Interestingly,
Gromiha et al.31 found that S and E distribute most signifi-
cantly differently between OMPs and non-OMPs. Here, S and E
ranked 2nd and 3rd. This may suggest that the top residues,
which are listed in Table 4, distribute significantly differently in
the transmembrane and non-transmembrane regions. For
example, proline (P) is the most informative feature according
to Table 7. The compositions of proline are 1.5% and 4.5%
in transmembrane and non-transmembrane regions of the
OMP14 dataset with t-test p-value o 0.01. This suggests signifi-
cantly higher frequency in non-transmembrane regions than

transmembrane regions. To probe the reasons for their distribu-
tion may need literature investigation.

3.6 The web server for OMP prediction

To aid the research community, a web server implementing
the TransOMP and SSEA-OMP methods was constructed. The
server was designed using Java, Perl and HTML. The web server
is freely accessible at http://genomics.fzu.edu.cn/OMP/index.
html. For each running, the web server calculates the secondary
structure alignment score by SSEA-OMP and transmembrane

Table 7 The top features in PCFF encoding

# Top residue pairs

1 PxSa

2 PA
3 SxP
4 PS
5 VP
6 SxxP
7 PxT
8 TxP
9 PP
10 PT
11 NxxP
12 PxxP
13 TxxP
14 AxP
15 PxxxQ
16 PxxxS
17 PxxxP
18 PxE
19 PxQ
20 AP

a The feature ‘PxS’ represents a 1-spaced residue pair of ‘PS’, where x
stands for any amino acid. The same representation is applied to other
k-spaced residue pairs.

Table 8 The amino acid composition in the top features of PCFF encoding e

#
Occurrence probability in
the top 100 features

1 P(0.47)a

2 S(0.085)
3 E(0.055)
4 Q(0.05)
5 D(0.05)
6 T(0.045)
7 N(0.045)
8 L(0.04)
9 A(0.04)
10 V(0.025)
11 R(0.025)
12 K(0.02)
13 G(0.02)
14 Y(0.015)
15 I(0.015)
16 F(0)
17 M(0)
18 C(0)
19 W(0)
20 H(0)

a The value inside the parentheses denotes the occurrence probability
of the corresponding residue in the top 100 residue pairs.
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region score by TransOMP. Depending on the I_CScore measure,
a query sequence determines whether it is an OMP. The 3D
structures will also be provided by an in-house Bayes probability-
based profile–profile alignment (paper in preparation). The
multi-thread technique was employed and the computational
time for processing a query sequence depends on the length of
the query sequence. It is estimated that the job will be finished
in 10 minutes if the query sequence is less than 500 amino
acids. The prediction results including OMP identification,
transmembrane region prediction, and 3D structural models
will be mailed to users when the jobs are finished.

4 Conclusions

Taken together, we have clearly shown that the position- and
composition-based encodings are effective features to predict the
transmembrane regions of OMPs as well as to identify OMPs from
genome-scale sequences. The success of our method should be
ascribed to the encodings we used which can effectively represent
the characteristics of the sequence environment surrounding the
target residues in OMPs. Furthermore, a simple secondary structure
probability-based prediction model was developed. The TransOMP
method was constructed by combining these effective and comple-
mentary encodings.

Although Chen et al.41 used k-spaced amino acid pairs of the
PSSM profile for the classification of integral membrane pro-
teins, it should be emphasized that our methods have made
significant improvement with respect to PSFM and the stan-
dard logistic function introduced, which are more biologically
meaningful for amino acid composition calculation. More
importantly, the application aspects of Chen et al. and ours
are different. Interestingly, both the PSFM profile and the
standard logistic function-based transformation can result in
higher Mcc values in the transmembrane region prediction. To
the best of our knowledge, this is the first application of
composition-based encoding of a sequence profile to the trans-
membrane region prediction of OMPs.

The TransOMP method has been benchmarked against state-
of-the-art methods and results showed that the TransOMP
method can generate higher Mcc values than other methods
tested in this work. But this does not mean that TransOMP will
replace other methods. The purpose of developing TransOMP is
to provide the community with a practical tool. Moreover, we hope
that the development of such novel methods will be helpful to
accelerate the exploration of the sequence–structure protein land-
scape in OMPs. Last but not the least, as TransOMP relies on the
evolutionary information of sequence profiles, it would raise the
issue that the method may hamper its performance when
the sequence profiles contain some false homologous sequences.
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