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ZincExplorer: an accurate hybrid method to improve
the prediction of zinc-binding sites from protein
sequences†

Zhen Chen,a Yanying Wang,a Ya-Feng Zhai,a Jiangning Song*bc and Ziding Zhang*a

As one of the most important trace elements within an organism, zinc has been shown to be involved

in numerous biological processes and closely implicated in various diseases. The zinc ion is important for

proteins to perform their functional roles. To provide in-depth functional annotation of zinc-binding

proteins, an initial but crucial step is the accurate recognition of zinc-binding sites. Motivated by the

biological importance of zinc, we propose a new method called ZincExplorer to predict zinc-binding

sites from protein sequences. ZincExplorer is a hybrid method that can accurately predict zinc-binding

sites from protein sequences. It integrates the outputs of three different types of predictors, namely,

SVM-, cluster- and template-based predictors. Four types of zinc-binding amino acids CHEDs (i.e. CYS,

HIS, ASP and GLU) could be predicted using ZincExplorer. It achieved a high AURPC (Area Under

Recall–Precision Curve) of 0.851, and a precision of 85.6% (specificity = 98.4%, MCC = 0.747) at the

70.0% recall for the CHEDs on the 5-fold cross-validation test. When tested on an independent dataset

containing 2023 zinc-binding CHEDs and 14 493 non-zinc-binding CHEDs, it achieved about 3–8%

higher AURPC in comparison to two other sequence-based predictors. Moreover, ZincExplorer could also

identify the interdependent relationships (IRs) of the predicted zinc-binding sites bound to the same

zinc ion, which makes it a useful tool for providing in-depth zinc-binding site annotation.

1 Introduction

Zinc is one of the most important and ubiquitous trace elements
in microorganisms, plants, and animals.1 It is reported that zinc
is the second most abundant transition metal ion in living
organisms, second only to iron.2,3 Like other types of metal ions,
zinc is considerably involved in enzyme catalysis. For instance,
zinc is the only metal ion that serves as a cofactor to more than
300 enzymes.1,4 Many cell processes are regulated by zinc,
involved in catalysis and co-catalysis by the enzymes, such as
DNA synthesis, normal growth, and brain development.5,6 Zinc
also plays structural roles in a variety of proteins. For example,

zinc finger proteins are the largest class of transcription factors
in the human genome and their structures are stabilized in the
presence of zinc ions.7,8

Generally, zinc-binding sites contain several types of amino
acids, among which CYS, HIS, GLU and ASP (CHED for short)
are the four most abundant, accounting for 96% of all zinc-
binding sites. Due to a wide range of functional and structural
roles of the zinc ions, identification of the zinc-binding sites is
an important step towards our better understanding of the
functions of zinc-binding proteins. Accordingly, a number of
computational methods have been developed to predict the
zinc-binding sites. Passerini et al. used a two-stage machine-
learning approach to predict all the CYS and HIS of a protein in
either of the three states (free, metal bound, or in disulfide
bridges) by using the sequence information extracted from the
position-specific evolutionary profiles as well as protein length
and amino acid compositions.9 Subsequently, they developed
another machine learning method ZincFinder to predict zinc-
binding residues and the bonding state of pairs of predicted
residues close in sequence.10 Shu et al. integrated an SVM-based
predictor and a homology-based predictor into a computational
tool called ZincPred to predict four types of zinc-binding CHEDs.
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The input features of ZincPred include the Position Specific
Substitution Matrices (PSSM) obtained from PSI-BLAST searching11

and the conservation score calculated from the PSSM.12 The two
aforementioned methods (ZincFinder and ZincPred) have been
considered as representative sequence-based predictors.

The number of high-resolution protein structures deposited
in the PDB database13 is increasing rapidly as a consequence of
high-throughput structural genomics efforts, which makes the
prediction of zinc-binding sites from protein structure possible.
A number of reasonably successful methods14–18 have been
developed by taking advantage of structural information. However,
although structure-based methods are generally more accurate
than sequence-based counterparts, they have certain limitations.
For example, they are only able to predict the zinc-binding sites of
the proteins whose structures have been determined but could not
be applied to annotate the complete zinc-binding proteomes. To
address these issues, in this study, we develop a new hybrid
approach called ZincExplorer, which is composed of SVM-,
cluster- and template-based predictors to predict the zinc-
binding sites in proteins from their amino acid sequences. Similar
to most previous studies, our method focuses on prediction of
zinc-binding residues CHED, because they account for the
majority of all the zinc-binding residues.

2 Methods

In this study, we develop a hybrid approach by training an SVM-
based predictor, a cluster-based predictor and a template-based
predictor to learn scoring and prediction rules for identifying
zinc-binding residues in proteins. All CHEDs of proteins in the
datasets were scanned to predict whether they are zinc-binding
sites or not. Here we define the zinc-binding CHEDs as positive
samples and the non-zinc-binding CHEDs as negative samples.
To construct ZincExplorer, the results of the SVM-based predictor
and the cluster-based predictor were combined through a simple
linear function to produce intermediate prediction results, and
the candidate sites were prioritized. Then, the Interdependent
Relationship (IR) of the candidate sites was assigned by the
template-based predictor. The final prediction results were
generated by integrating the intermediate prediction result
and the results obtained using the template-based predictor.
The complete workflow of our ZincExplorer methodology is
illustrated in Fig. 1.

2.1 Dataset

The current dataset used in this study was previously collected
by Passerini et al. (2006), which we termed the Passerini_dataset.
In particular, all the homologous PDB chains in this dataset were
filtered to ensure that no pair of chains shared a positive HSSP
value.19 If there was any nitrogen, oxygen or sulfur atom of the
residues in a protein chain located within 3 Å to a Zn atom, then
the Zn atom would be regarded as binding to the protein chain
and the corresponding residues were defined as zinc-binding
sites. In our work, we only used the PDB chains containing Zn
atoms in the Passerini_dataset and as a result 208 non-redundant
PDB chains were kept. We also only considered the biologically

significant Zn atoms (i.e. Zn3, Zn4 and Zn5, where Znx denotes
Zn atoms binding to x residues), because Zn1 and Zn2 are
usually located on the surface of the proteins and have no clear
biological function.12 The 999 CHEDs that bind to Zn3, Zn4 or
Zn5 in the 208 PDB chains are regarded as positive samples and
the rest 7426 CHEDs are taken as negative samples. In order to
assess the performance of ZincExplorer, we also used another
dataset named the Zhao_dataset, which was originally collected
by Zhao et al.17 In order to guarantee an independent test, the
PDB chains present in the Passerini_dataset were removed
from Zhao_dataset. Finally, 392 PDB chains and 16 516 sites
(2023 zinc-binding CHEDs and 14 493 non-zinc-binding CHEDs)
were kept in the Zhao_dataset. More details of the Passerini_
dataset and the Zhao_dataset are available in the ESI.†

2.2 SVM-based predictor

We used SVM-light (http://svmlight.joachims.org/) as the imple-
mentation function of SVM and selected the radial basis func-
tion (RBF) as the kernel function. To maximize the performance
of SVM, two parameters (i.e. the regularization parameter C and
the width parameter g) were preliminarily optimized through a
grid search strategy. First, the ranges of parameters C and g
were set as [2�5, 215] and [2�15, 23], respectively. Then, a step
size of 2 was assigned for log2 C and log2 g, respectively, which
resulted in a total number of 11 � 10 = 110 grids. Finally, all the
110 grids were evaluated through 5-fold cross-validation on the
Passerini_dataset to determine the optimal parameters (C = 2.0
and g = 0.0078125). Each CHED of both positive and negative
samples was represented by a residue fragment with the CHED
located at the center of the fragment. We tested different
fragment sizes ranging from 13 to 25 through 5-fold cross-
validation on the Passerini_dataset. As a result, the optimal
window size of the fragment was assigned as 21. Each fragment
was then converted into an input feature vector for SVM
training and testing. The feature representation is detailed as
follows.

2.2.1 PSSM, RW-GRMTP and Shannon entropy. Previous
studies have shown that sequence conservation is an important
feature for zinc-binding site prediction.9,10,12 Zinc-binding sites
are generally more conserved than non-zinc-binding sites. It is
worth noting that sequence conservation has also been widely
used for identifying other functional sites such as catalytic
residues.20–24 To capture the useful information contained in
residue conservation as much as possible, we extracted three
types of features from the PSI-BLAST profiles. We first obtained
the PSSM profile by running PSI-BLAST against the NCBI nr90
database (version as of October 2009) with parameters �h of
0.001 and �j of 3. Then, we extracted the PSSM, the ‘‘relative
weight of gapless real matches to pseudocounts’’ (RW-GRMTP),
and the weighted observed percentages (WOP), respectively.
The 20-dimensional PSSM vector represents the log-likelihood
of the substitution of 20 amino acids at a specific position,25

reflecting the conservation level of the corresponding amino
acids. The 2-dimensional RW-GRMTP (i.e. the last two columns in
the PSSM profile) reflects the aligned residue number at that
position. Both the 20-dimensional PSSM vector and 2-dimensional
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RW-GRMTP vector were further normalized by 1/(1 + e�x). The
20-dimensional WOP vector reflects the frequency distribution
of 20 amino acids at that position.11 Here we converted the
vector into a single feature by computing the Shannon entropy:

Entropy ¼
X20
i¼1
�pi logðpiÞ (1)

pi ¼ ni

,X20
j¼1

nj (2)

where nj is the jth element of the WOP vector. Thus, for a
fragment of 21 residues, the dimensionality of the features
extracted from the PSI-BLAST profile is 23 � 21 = 483.

2.2.2 k-Spaced amino acid pair composition. The composi-
tion of k-spaced amino acid pairs (CKSAAP) has been successfully
used in many prediction tasks.26–29 It describes the short-range

interactions of residues within a sequence or a sequence
fragment. In this work, k = 0, 1, 2, 3, 4 and 5 were taken into
account. For each k, there are 400 possible residue pairs.
Therefore, the total dimensionality of CKSAAP is 2400. Here,
we proposed a simplified method to reduce the dimensionality
of CKSAAP. We computed the occurring frequency for each
amino acid pair based on all the positive samples of the
Zhao_dataset (or based on all the positive samples of the
Passerini_dataset when performing the independent test). Only
those amino acid pairs having a frequency larger than a thresh-
old value of 0.006 were selected. Note that the optimal thresh-
old was obtained by testing different values from 0.001 to 0.01
with a step size of 0.001 through 5-fold cross-validation. Finally,
51 and 64 amino acid pairs were selected from the Passerini_
dataset and the Zhao_dataset, respectively. To avoid potential
over-fitting, the 64 amino acid pairs obtained from the Zhao_
dataset were used for the 5-fold cross-validation tests. For sequence

Fig. 1 The complete workflow of the whole prediction procedures of ZincExplorer. First, the results of the SVM-based predictor and the cluster-based predictor were
combined; then, the candidate sites were selected based on the combined prediction results; finally, the prediction results obtained by the template-based predictor
were fed back to the combined results of the SVM-based and cluster-based predictors to generate the final prediction results. In the meanwhile, the IR between the
predicted candidate zinc-binding residues was also established.
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fragment encoding, we used a 64-dimensional vector labeled
with values 0 or 1. If a sequence fragment contained a given
amino acid pair, the corresponding element would be 1.
Otherwise, the corresponding element would be 0.

2.2.3 CHED type. In order to discriminate the zinc-binding
site types, the centered CHEDs were encoded for training the
classifiers. More specifically, a 4-dimensional vector was used
to encode the CHED type, for example, ‘‘C’’ was encoded as
‘‘1000’’, ‘‘H’’ was encoded as ‘‘0100’’, ‘‘D’’ was encoded as
‘‘0010’’, while ‘‘E’’ was encoded as ‘‘0001’’.

2.2.4 The feature vector dimensionality of the SVM-based
predictor. To construct the SVM-based predictor, all the feature
encodings mentioned above were concatenated together to
form a large feature vector. In summary, the total dimensionality
of the feature vector is 551 in the 5-fold cross-validation tests,
including 420-dimensional PSSM, 42-dimensional RW-GRMTP,
21-dimensional Shannon entropy, 4-dimensional CHED type as
well as 64-dimensional CKSAAP selected from the Zhao_dataset.

To avoid any potential over-estimation in the independent
test, the employed CKSAAP encoding should not be selected
from the Zhao_dataset. Thus, we used 51-dimensional CKSAAP
selected from the Passerini_dataset to train the model for the
independent test. Finally, only 538-dimensional feature vectors
were used in the independent test.

2.3 Cluster-based predictor

Because most of the zinc-binding sites are highly conserved, we
hypothesize that zinc-binding sites along with their surrounding
residues could be divided into a limited number of clusters
that have similar evolutionary characteristics. Based on this
hypothesis we were able to predict whether a given sample was
a zinc-binding site or not by calculating the similarity between
the given sample and the existing clusters. Training of this novel
cluster-based predictor contains the following four major steps.

Step 1: divide all the positive samples in the training data
into groups

All the positive samples in the training data were divided
into four groups according to their central amino acid types
(i.e. CYS, HIS, GLU and ASP groups), since the evolutionary
characteristics may be diverse for different zinc-binding
residues. In the proposed cluster-based predictor, we used
the same searching strategy as mentioned in the SVM-based
predictor to find the optimal window size of samples. At last,
the optimal window size was set as 15.

Step 2: calculate the similarity matrix
The similarity between any two positive samples in a group

can be measured by the PICASSO3 score30 between the two
corresponding profiles, which is defined as:

Sða; bÞ ¼
X15
i¼1

X20
j¼1

aij log
bij

fj

� �
þ bij log

aij

fj

� �� � !
(3)

where a and b are the profiles of two sequence fragments in a
group, while f is the background frequency of 20 amino acid
types. ai,j is calculated as:

ai,j = eMi,jlufj (4)

where M denotes the PSSM vector, and lu is the standard
ungapped Lambda value in the PSSM file of profile a. Likewise,
bi,j can be derived from the PSSM profile of b. To facilitate the
following clustering step, the element values in the similarity
matrix are further modified as follows:

Matrixða; bÞ ¼
Sða; bÞ if ðSða; bÞ � 0Þ

0 if ðSða; bÞo 0Þ

(
(5)

Step 3: clustering
The Markov Cluster Algorithm (MCL) (http://micans.org/mcl/)

was employed to divide the samples of a group into clusters with
the inflation parameter �I set at 6.

Step 4: compute the prediction score of the test sample
For a query sample U, suppose its central amino acid type is

CYS, the pseudocode of the prediction procedure can be
described as follows:

for each cluster Ci in the CYS-centered group
{

for each sample Sj in Ci

{
calculate the similarity score S(U, Sj);
Scorei+ = S(U, Sj);

}
Scorei/ = N(Ci); #N(Ci) is the sample number in cluster Ci

}
Scorecluster(U) = max{Scorei}
return Scorecluster(U);
where Scorecluster(U) is the result of the cluster-based

method.

2.4 Linear combination between the SVM-based and cluster-
based predictors

We first rescaled the prediction scores of the SVM-based and
cluster-based predictors to [0, 1] by using the function y =
1/(1 + e�x). Then, we combined the output scores resulting from
these two predictors using the following linear formula:

ScoreSVM+cluster = a � ScoreSVM + (1 � a) � Scorecluster (6)

To determine the optimal value of a, we tested the performance
of ScoreSVM+cluster using different a values, ranging from 0.0 to 1.0
at an interval of 0.05. In this study, the optimal value of a was
assigned to 0.8.

2.5 Template-based predictor

The Zn atom needs to bind at least three residues in order to
play its functional role.1 The residues that coordinate with the
same Zn atom have an Interdependent Relationship (IR), which
are denoted 3 or 4-residues and are jointly involved in the
coordination of the same Zn ion.31 It is possible to detect IRs of
zinc-binding residues in a protein using the known IRs in the
training data of Zn3 or Zn4 as templates. Furthermore,
the obtained IR information could be used in turn to improve
the prediction accuracy.

Here we propose a template-based predictor. A Zn3/Zn4
template is defined as three residues (or four residues) that

Method Molecular BioSystems



This journal is c The Royal Society of Chemistry 2013 Mol. BioSyst., 2013, 9, 2213--2222 2217

are coordinated by the same Zn atom and their surrounding
residues. The window size was set as 15 in this study. The
procedures for implementing the algorithm are described as follows:

(a) Extract all the Zn3/Zn4 templates that belong to the same
PDB chain in the training data.

(b) Select the candidate sites for each protein in the test set.
Only the sites predicted from the SVM- and cluster-
based predictors with a relatively high prediction score (i.e.
Scoresvm+cluster > 0.19) were selected. The purpose of this
filtering is to reduce the computational complexity of the
template-based predictor. It was estimated that many non-zinc-
binding sites were filtered and more than 95% of the zinc-binding
sites were still retained after this filtering.

(c) Enumerate all the combinations of 3-residue (or 4-residue)
groups of the candidate sites in the tested protein.

(d) Calculate the similarity score between a 3-residue group
(or a 4-residue group) in the tested protein and all the Zn3 (or Zn4)
templates in the training data. The procedure is generally time
consuming, which is detailed in the ESI.†

(e) Extract all the 3-residue (or 4-residue) groups in the
tested protein whose similarity score is larger than 0. Then
select the 3-residue (or 4-residue) group that has the highest
similarity score and remove the 3-residue (4-residue) groups
that have identical residues with the selected 3-residue (or
4-residue) group.

(f) Repeat the above step (e) on the unselected groups until
no other 3-residue (or 4-residue) groups can be further selected
or removed.

Finally, the remaining residue groups are regarded as the
predicted IRs in the tested protein, which can be used to refine
the zinc-binding site prediction. Briefly, all the sites of the
selected 3-residue or 4-residue groups form a sample set O.
The final prediction score of a potential zinc-binding site S can
be defined as follows:

ScoreFinal ¼
ScoreSVMþcluster ifðS =2 OÞ

ScoreSVMþcluster þ d ifðS 2 OÞ

(
(7)

where d is the reliability parameter. We varied d from 0.05 to
0.40 at an interval of 0.05 to benchmark the performance of
ScoreFinal on the Passerini_dataset and the optimal d was set
to 0.1.

2.6 Performance assessment

Four measurements [i.e. precision, recall, specificity and Matthew
correlation coefficient (MCC)] are used to evaluate the prediction
performance, which are, respectively, defined as:

Precision ¼ tp

tpþ fp
(8)

Recall ¼ Sensitivity ¼ tp

tpþ fn
(9)

Specificity ¼ tn

tnþ fp
(10)

MCC ¼ tp� tn� fp� fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtpþ fpÞ � ðtpþ fnÞ � ðtnþ fnÞ � ðtnþ fpÞ

p (11)

where tp, fp, fn and tn represent the true positives, false
positives, false negatives and true negatives, respectively. Due
to the unbalanced dataset of the positive and negative samples,
the Recall–Precision Curve (RPC) which plots precision as a
function of recall for all the possible thresholds is also used to
evaluate the performance of our method, ZincExplorer, as it is
suitable for dealing with unbalanced samples.32 Furthermore,
the overall performance of ZincExplorer is also quantified by
the corresponding Area Under the Recall–Precision Curve
(AURPC). The closer an AURPC value is to 1, the better the
performance of a prediction method is.

3 Results and discussion
3.1 Performance of ZincExplorer

Through 5-fold cross-validation tests on the Passerini_dataset,
ZincExplorer achieved an AUPRC of 0.851, and a precision of
85.6% (specificity = 98.4%, MCC = 0.747) at a recall of 70%
(Fig. 2). As a hybrid method, the performance of ZincExplorer’s
component predictors was also assessed individually. As a
result, the SVM-based predictor alone achieved an AURPC of
0.813, and a 79.1% precision (specificity = 97.5%, MCC = 0.711)
at a recall of 70.0% (Fig. 2). In contrast, the cluster-based
predictor alone only yielded an AURPC of 0.664. After combining
the SVM-based and cluster-based predictors, the resultant predictor
attained an AUPRC of 0.840 (Z-test,33 p-value = 4.28 � 10�12) and
the corresponding precision at the 70% recall control was 84.6%
(specificity = 98.3%, MCC = 0.743). Although the template-based
predictor alone cannot be used to predict the zinc-binding site

Fig. 2 Recall–precision curves for component predictors of ZincExplorer based
on the Passerini_dataset. The performance of all the predictors was evaluated
using the 5-fold cross-validation tests.
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directly, it is indispensable for ZincExplorer to achieve the best
performance.

3.2 The power of a linear combination between the SVM- and
cluster-based predictors

The highlight of the current work is to combine the SVM- and
cluster-based predictors into the computational framework of
ZincExplorer. It is well known that SVM is suitable for dealing
with binary classification tasks. For some prediction problems,
however, it is more appropriate to cluster the samples into
several subgroups rather than two classes only. The cluster-
based predictor was designed to address this issue. For exam-
ple, 19 zinc-binding sites of CYS in the Passerini_dataset were
grouped into one cluster. All of these 19 sites shared a CxxC
motif at the same position (Fig. 3), which exemplified that the
cluster-based predictor could effectively group the zinc-binding
sites with a similar sequence pattern together and was thus
suitable for the prediction. Therefore, it is understandable that
we could achieve a better performance by combining the SVM-
and cluster-based predictors. To demonstrate this, we further
compared the performance of the SVM- and cluster-based
predictors for four zinc-binding residue types CYS, HIS, GLU
and ASP, respectively (Table 1). It can be seen that the predic-
tion performance of CYS was clearly the best among the four
amino acid types, with the AURPC ranging between 0.927 and
0.947. We can also see that, on average, there was an accuracy
increase when comparing the performance of the combined
SVM-based predictor and the cluster-based predictor (SVM +
cluster) with that of the individual predictor (SVM) (Table 1).
This tendency holds across all the four major zinc-binding
types of residues. The reason why the prediction accuracy of
CYS is much higher than the other three types might be due to
the relatively high abundance of zinc-binding CYS in the
training data. In addition, SVM has an excellent ability to find
comprehensive prediction rules that can cover most cases of
CYS and identify the zinc-binding CYS from all candidate CYSs,
with a sole prerequisite that abundant and unbiased training
data must be available in order to infer the rules. With respect
to the other three amino acid types, especially GLU and ASP,
their sample size is so small in nature that it is difficult for SVM
to find complete and unbiased rules to better distinguish them.
For the cluster-based predictor, although its discriminating
ability is not as good as SVM, it has an advantage of not being
overly dependent on the sample size. For a query sample, it can

usually detect a cluster as its neighbor. If the similarity score
between the query sample and the neighboring cluster was
larger than the prediction cutoff, the query sample would be
predicted as zinc-binding. For CYS, HIS, GLU and ASP, there
was a performance improvement when combining the SVM-
based predictor and the cluster-based predictor. These observa-
tions suggest that the strategy of combining the SVM-based and
cluster-based predictors could make use of their respective
advantages of the two algorithms and lead to a significant
performance improvement. It is worth noting that the strategy
of the cluster-based predictor has been successfully applied to
other prediction tasks such as the prediction of protein phos-
phorylation sites.34,35 Considering the fact that many bioinfor-
matics classification tasks are not two-class problems, we
expect that this powerful integration strategy between the
SVM- and cluster-based predictors may serve as an effective
framework to address many other diverse classification tasks in
the fields of bioinformatics and computational biology.

In theory, the cluster-based predictor is similar to the k-nearest-
neighbor (KNN) approach. We further tested the KNN method in
our work. The results showed that the introduction of KNN achieved
considerably lower prediction accuracy in comparison to the use of
the cluster-based predictor (data not shown). Indeed, there is still a
clear methodology difference between these two methods. The
neighbor number k for KNN is fixed, while the neighbor number
is variable in the clustering-based method. The above computa-
tional experiment suggests that the variable neighbor number
makes more sense than the fixed neighbor number in our work.

3.3 The power of integration with the template-based
predictor

In order for a Zn atom to play its functional role, it has to
coordinate with three or four (even more) zinc-binding residues.

Fig. 3 Sequence logo of a representative zinc-binding site cluster containing 19 zinc-binding sites of CYS. All of these 19 sites shared a CxxC motif at the same
position. The sequence logo was prepared using the web server http://weblogo.berkeley.edu/logo.cgi.

Table 1 Performance comparison of the SVM-based, cluster-based and
template-based predictors on the Passerini_dataset for zinc-binding CHEDs. The
performance was evaluated by the AURPC values

Zinc-binding type SVM
SVM +
cluster

SVM +
template

SVM + cluster +
template

CYS 0.927 0.941 0.939 0.947
HIS 0.751 0.798 0.793 0.815
GLU 0.168 0.277 0.221 0.298
ASP 0.356 0.461 0.470 0.516
ALL 0.813 0.840 0.837 0.851
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As such, the IR of zinc-binding residues that bind to the same
Zn atom can be effectively employed to improve the predictive
performance of our method (Fig. 2). The candidate sites were
selected based on the intermediate prediction result of the
combined SVM-based and cluster-based predictors. Then
the output of the template-based predictor was fed back to
the intermediate result to augment the final prediction. Mean-
while, the IR of the predicted zinc-binding sites was also inferred.
Evaluated by 5-fold cross-validation tests on the Passerini_dataset,
the template-based predictor achieved an accuracy of 25.3% for
Zn3 and 38.4% for Zn4 (Fig. 4A), respectively. We further
calculated the corresponding accuracy values at the residue
level. As shown in Fig. 4B, for Zn3 ASP (41.1%) was the best
predicted residue, followed by HIS (37.6%) and GLU (31.4%),
whereas CYS (15.4%) was predicted worst. For Zn4, CYS (52.3%)
was predicted with the best performance, followed by HIS
(41.1%) and ASP (37.5%), whereas GLU (21.1%) was predicted
worst. Although the template-based predictor’s performance in
identifying the IR of predicted zinc-binding sites is still not
perfect, it provides more comprehensive zinc-binding site
information for further experimental validation. In addition,
the predicted IR information is also useful for the 3D structure
prediction of the query protein. To the best of our knowledge,
there is only one existing method, MetalDetector,31 which was
designed to provide the IR information of the predicted zinc-
binding residues. However, MetalDetector failed to exploit this
to improve the performance of the predictor and could only
predict two types of zinc-binding residues, i.e. CYS and HIS,
rather than four major types.

3.4 The web server of ZincExplorer

To facilitate the research community, we have implemented an
online web server of our ZincExplorer method, which is freely
accessible at http://protein.cau.edu.cn/ZincExplorer. It accepts
a query sequence in the RAW or the FASTA format. The
Passerini_dataset was used as the training dataset for training
the prediction models of this web server. The prediction out-
puts include residue position, prediction score, zinc-binding
annotation and IRs. It is estimated that a prediction score

of Z0.4 corresponds to a false positive rate of r2.5%,
i.e., 97.5% confidence level. A four-CPU Dell Linux machine
with 16 GB of main memory hosts the web server. The computa-
tional time required for processing a query sequence of 600
amino acids is usually no more than ten minutes. For proteome-
wide applications, users are strongly recommended to download
the stand-alone version and run it locally.

3.5 Comparison with other methods

We further compared our developed tool ZincExplorer with two
other state-of-the-art sequence-based tools ZincFinder10 and
ZincPred12 based on the independent test dataset, i.e. the
Zhao_dataset. For making a comparison, the stand-alone ver-
sions of ZincFinder and ZincPred were, respectively, down-
loaded from their websites. We then evaluated the prediction
performance of zinc-binding sites using these three tools at
both the overall level and individual CYS, HIS, GLU and ASP
levels, respectively. In particular, as both ZincFinder and
ZincPred cannot provide prediction scores for certain CHEDs
in some protein sequences, we considered these CHEDs as
predicted negatives and accordingly assigned their prediction
scores as 0 for the sake of facilitating the comparison.

As a result, the performance comparison clearly demon-
strates that ZincExplorer has outperformed the other two
sequence-based tools. ZincExplorer reached an AUPRC of
0.907, which represents 8% and 3% increase than ZincPred
(AURPC = 0.823; Z-test, p-value = 0) and ZincFinder (AURPC =
0.873; Z-test, p-value = 3.23 � 10�9), respectively (Fig. 5A). At the
70% recall control, ZincExplorer achieved a precision of 94.3%
(specificity = 99.4%, MCC = 0.792), while ZincPred and
ZincFinder achieved a precision of 82.2% (specificity = 97.8%,
MCC = 0.729) and 91.6% (specificity = 99.1%, MCC = 0.778),
respectively.

To provide further insights into the predictive power of
the three tools, we further examined their performance on
predicting zinc-binding CYS, HIS, GLU and ASP separately
(Table 2 and Fig. 6). We can see that, in general, CYS was
predicted with the overall best performance by all the predictors,
followed by HIS and GLU. Among the four types of zinc-binding

Fig. 4 The IR prediction accuracy of the template-based predictor through 5-fold cross-validation on the Passerini_dataset. The prediction accuracy was defined as:
accuracy = Npredicted/Nall, where Npredicted is the number of Zinc3/Zinc4 residue groups correctly identified by the template-based predictor, and Nall is the total number
of the corresponding Zinc3/Zinc4 groups in the Passerini_dataset. (A) The overall accuracy values; (B) the accuracy values measured at the residue level.
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residues, ASP was predicted worst. As mentioned above,
because CYS is the most abundant form of zinc-binding

residues and the machine learning predictors like SVM tend to
better learn the underlying rules of sample classification, given
large amounts of available data, all these three tools performed
well in terms of the CYS zinc-binding type prediction. Accordingly,
the AURPC values of ZincExplorer, ZincPred and ZincFinder have
reached 0.973, 0.960 and 0.960 (Table 2), respectively. Compara-
tively, ZincExplorer performed slightly better than ZincPred and
ZincFinder for predicting CYS. And compared with the other
two tools, ZincExplorer also exhibited a great improvement in
predicting HIS, GLU and ASP. For example, it achieved 21.3% and
25.9% higher in AURPC than ZincPred and ZincFinder for
predicting GLU and 2.7–16% higher in AURPC for predicting
HIS and ASP, respectively. The consistently improved perfor-
mance by ZincExplorer across the four types of zinc-binding
residues implies the advantage of incorporating the cluster-based
predictor into the SVM-based machine learning framework. To
make an objective and fair comparison, we also compared
ZincExplorer with ZincPred and ZincFinder by only evaluating
those predicted CHEDs for which both ZincPred and ZincFinder
yielded valid prediction outputs, and similar performance
observations were obtained (see ESI† for detailed results).

To provide a more rigorous method of comparison, we also
built a subset from the Zhao_dataset by removing the
sequences sharing >20% sequence identity with any sequence
in the Passerini_dataset. In the resulting subset (i.e. Zhao_
dataset_sub), there were 257 PDB chains and 13 789 sites (1244
zinc-binding CHEDs and 12 545 non-zinc-binding CHEDs).
Again, ZincExplorer outperformed ZincPred and ZincFinder
on the Zhao_dataset_sub dataset, although all these three
methods showed less powerful performance. The AUPRC of
ZincExplorer was 0.870, while the AUPRC of ZincPred and
ZincFinder was 0.784 and 0.821, respectively (Fig. 5B).

Moreover, we also compared the result of our template-
based predictor with the MetalDetector approach by selecting
the Zn3 and Zn4 templates comprising CYS and HIS, since the
MetalDetector approach could only predict the two residue
types. We installed the stand-alone version of MetalDetector
in our local machine and did the prediction for the whole
Passerini_dataset. For Zn3 and Zn4 groups, our template-based
predictor achieved an accuracy of 84.0% and 47.4%, while
MetalDetector yielded an accuracy of 32.0% and 32.2%, respec-
tively (Fig. 7). These results indicate that our template-based
predictor outperformed MetalDetector considerably.

Fig. 5 Performance comparison of the three prediction tools (ZincExplorer, Zinc-
Finder and ZincPred) based on the Zhao_dataset (A) and Zhao_dataset_sub (B).

Table 2 Performance comparison of the three prediction tools, ZincExplorer, ZincFinder and ZincPred on the Zhao_dataset. The performance was evaluated using the
precision, specificity and MCC values at the 70% recall control as well as the AUPRC values

Tool

ALL CYS HIS GLU ASP

Precision/
specificity/MCC AURPC

Precision/
specificity/MCC AURPC

Precision/
specificity/MCC AURPC

Precision/
specificity/MCC AURPC

Precision/
specificity/MCC AURPC

ZincExplorer 94.3%/99.4%/
0.792

0.907 98.3%/98.3%/
0.680

0.973 76.8%/95.4%/
0.679

0.798 6.3%/89.8%/
0.192

0.421 11.5%/91.6%/
0.262

0.402

ZincPred 82.2%/97.8%/
0.729

0.823 96.6%/96.3%/
0.660

0.960 64.0%/91.4%/
0.594

0.745 6.1%/89.2%/
0.187

0.208 6.7%/84.9%/
0.186

0.375

ZincFinder 91.6%/99.1%/
0.778

0.873 97.6%/97.4%/
0.671

0.960 62.2%/90.8%/
0.581

0.732 6.4%/92.8%/
0.171a

0.162 6.5%/88.5%/
0.161a

0.242

a The precision, specificity and MCC values were generated based on a recall value of 50%.
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To further illustrate the predictive power of ZincExplorer, we
performed a case study of bacteriophage T7 lysozyme, as shown
in Fig. 8. The structure of the bacteriophage T7 lysozyme
(PDB entry: 1LBA) contains a zinc atom, bound directly to
three residues (HIS_13, HIS_118 and CYS_126). ZincExplorer
correctly predicted all the three zinc-binding sites and accurately
identified the IR of these three residues. In contrast, ZincPred
also identified all of the three residues as well as predicted two
false positive binding sites (i.e. HIS_43 and HIS_64). In the case
of ZincFinder, it correctly predicted HIS_118 and CYS_126, but
failed to detect HIS_13.

Although we have attempted to make a fair performance
comparison between different predictors, an entirely fair
comparison is hard to achieve due to methodological and
dataset differences. Considering that these three predictors
were developed using different datasets, one may argue that
the performance difference of these three methods could be
caused by different training sets. In this work, the NCBI nr90
database (version as of October 2009) was used to extract
sequence features, which should be newer than the corres-
ponding database used in ZincPred and ZincFinder. Thus, one
may also further argue that the improved performance of
ZincExplorer may benefit from an updated version of the NCBI
nr90 database. We hope some standard training/testing data-
sets as well as benchmarking frameworks will be available in

the field of zinc-binding site prediction in future. Thus, differ-
ent prediction methods can be more reliably and unbiasedly
benchmarked.

4 Conclusion

In this study, in order to accurately identify zinc-binding sites
in proteins, we developed an effective prediction tool termed
ZincExplorer, which combines an SVM-based predictor, a cluster-
based predictor and an ad hoc template-based predictor.

Fig. 6 Performance comparison of ZincExplorer, ZincFinder and ZincPred for predicting zinc-binding CYS, HIS, GLU and ASP, respectively, based on the Zhao_dataset.
Recall–precision curves for CYS, HIS, GLU and ASP were plotted in panels A, B, C and D, respectively. In terms of AUPRC, our method improved the prediction
significantly (Z-test, p-value o 0.05) for all the CHEDs with the only exception of the comparison with ZincPred for ASP (Z-test, p-value = 0.273).

Fig. 7 Performance comparison of the template-based predictor with Metal-
Detector on the Zn3 or Zn4 templates. The comparison was based merely on two
residue types (CYS and ASP) in the Passerini_dataset, since MetalDetector could
only predict these two residue types.

Fig. 8 The prediction performance of the three sequence-based tools (ZincEx-
plorer, ZincPred and ZincFinder) for the prediction of zinc-binding sites in the
bacteriophage T7 lysozyme (PDB ID: 1LBA). There are three zinc-binding residues,
i.e. HIS_13, HIS_118 and CYS_126, which coordinate with the same zinc ion. As
can be seen, ZincExplorer correctly predicted all the three residues and accurately
inferred the IR between them. As a comparison, ZincPred also identified all the
three residues but identified two false zinc-binding sites (i.e. HIS_43 and HIS_64).
ZincFinder identified two of the three residues. All the residue positions high-
lighted in the graph are their sequence positions.
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When evaluated based on the 5-fold cross-validation tests on a non-
redundant dataset of 208 PDB chains, it achieved an AURPC of
0.851 for all CHEDs. When tested on an independent dataset,
ZincExplorer clearly outperformed the other two sequence-based
tools ZincPred and ZincFinder, especially for predicting the zinc-
binding types HIS, GLU and ASP. Furthermore, ZincExplorer can
not only predict zinc-binding sites from sequence information but
also infer the IRs of the predicted candidate sites that bind to the
same zinc ion. The latter feature makes it an attractive tool for
facilitating the identification of coordinating zinc-binding sites and
the final prediction of the 3D structure of the protein. Built upon an
effective combination of the three different component predictors,
ZincExplorer was shown to be able to provide a significantly
improved performance for predicting HIS, GLU and ASP despite
their limited abundance. We believe that ZincExplorer can be
applied as a powerful tool to perform in silico proteome-wide
prediction of zinc-binding proteins, which will greatly aid the
current efforts for annotating the zinc proteome.
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