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As one of the most common post-translational modifications, ubiquitination regulates the quantity and func-
tion of a variety of proteins. Experimental and clinical investigations have also suggested the crucial roles of
ubiquitination in several human diseases. The complicated sequence context of human ubiquitination sites
revealed by proteomic studies highlights the need of developing effective computational strategies to predict
human ubiquitination sites. Here we report the establishment of a novel human-specific ubiquitination site
predictor through the integration of multiple complementary classifiers. Firstly, a Support Vector Machine
(SVM) classier was constructed based on the composition of k-spaced amino acid pairs (CKSAAP) encoding,
which has been utilized in our previous yeast ubiquitination site predictor. To further exploit the pattern and
properties of the ubiquitination sites and their flanking residues, three additional SVM classifiers were con-
structed using the binary amino acid encoding, the AAindex physicochemical property encoding and the pro-
tein aggregation propensity encoding, respectively. Through an integration that relied on logistic regression,
the resulting predictor termed hCKSAAP_UDbSite achieved an area under ROC curve (AUC) of 0.770 in 5-fold
cross-validation test on a class-balanced training dataset. When tested on a class-balanced independent test-
ing dataset that contains 3419 ubiquitination sites, hCKSAAP_UDbSite has also achieved a robust performance
with an AUC of 0.757. Specifically, it has consistently performed better than the predictor using the CKSAAP
encoding alone and two other publicly available predictors which are not human-specific. Given its promis-
ing performance in our large-scale datasets, hCKSAAP_UbSite has been made publicly available at our server

(http://protein.cau.edu.cn/cksaap_ubsite/).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ubiquitination is a post-translational modification process where
a residue (i.e. lysine for most cases) is covalently attached with single
or multiple ubiquitin(s) [1,2]. This modification on one hand tags pro-
teins to be degraded through the proteolytic system [3], on the other
hand regulates a wide spectrum of biological processes [4] including
but not limited to transcription [5], endocytosis [6] and cell cycle
[7]. Despite the vital role of ubiquitination modification, the number
of publicly available ubiquitination site prediction server is still very

Abbreviations: CKSAAP, composition of k-spaced amino acid pairs; SVM, Support
Vector Machine; ROC, receiver-operating-characteristic; AUC, area under ROC curve;
AUCO1, the relative area under ROC curve limiting an up to 10% false positive rate
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limited. UbiPred uses the mean values of the selected physicochemi-
cal properties of amino acids as input to a Support Vector Machine
(SVM) classifier [8]. UbPred is a yeast-centric ubiquitination site
predictor which employs extensive sequence, structural and evolu-
tionary features [9]. In our previous work, we developed a yeast
ubiquitination site predictor based on the composition of k-spaced
amino acid pair (CKSAAP) encoding [10]. The CKSAAP encoding, orig-
inally termed as the collocated amino acid pair encoding [11], has
been proposed to solve a number of protein structure-related classifica-
tion problems including the prediction of flexible/rigid region [12],
protein crystallization ability [11], protein structural class [13] and
membrane protein type [ 14]. This encoding has been recently exploited
to develop a variety of post-translational modification site predictors
[10,15-17]. The developed CKSAAP_UDbSite predictor achieved an over-
all performance improvement in comparison to several other predictors
on multiple datasets [10].

Here, we report the development of a new predictor specifically
designed for human ubiquitination site prediction. The reason for
doing this is three folds. First, given the intriguing relationship be-
tween ubiquitination and key human health topics like cancer [18],
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virus infection [19] and inflammation [20], there is currently no
human-centric ubiquitination site prediction server. Indeed, many
users of our previous yeast-specific server expressed urgent desire
for such a server by even requesting for the prediction outputs on
human proteins through our yeast-specific predictor. This urgent
need to develop human-specific ubiquitination site prediction server
has motivated this study. Second, all of the aforementioned methods
were trained on relatively small datasets with no more than 500
ubiquitination sites, because of the limited data availability at that
time when they were established. It has been found that predictors
trained on a dataset of limited size and coverage often failed to iden-
tify novel ubiquitination sites [9,21]. Therefore, predictors trained on
a large proteomic dataset are deemed essential in order to better
characterize the underlying bona fide ubiquitination motifs at the
proteome scale. Recent breakthrough of proteomic techniques has
resulted in a rapid growth of ubiquitination site data by orders of
magnitudes [22-24], providing unprecedented opportunities for fur-
ther improvement of ubiquitination predictors. Third and utmost,
the sequence context of human ubiquitination sites differs signifi-
cantly from the yeast counterpart (see the sequence logos [25] in
Fig. 1 for an intuitive illustration). Based on preliminary tests, it has
been observed that prediction of human ubiquitination sites based
on yeast-centric predictors has often ended with a frustrating and
dissatisfying accuracy [10,21,26].

It should be noted that, however, our human ubiquitination site
prediction server (termed hCKSAAP_UbSite) is not a simple CKSAAP
predictor re-trained on the human datasets. In fact, we improved
the accuracy by further incorporating three informative amino acid
pattern and property encoding schemes. Briefly speaking, we found
that the binary encoding, which directly reflect the position-specific
amino acid pattern surrounding the ubiquitination site, is comple-
mentary to the position-independent CKSAAP encoding. By further
integrating two groups of amino acid properties, namely, the selected
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AAindex [27] physicochemical features and residue aggregation pro-
pensity, our method can achieve an even better performance when
evaluated on both cross-validation test and large-scale independent
test. In the following sections we first provide technical details about
how the predictor was established. The performance assessment, dis-
cussion about encoding schemes and server implementation will be
subsequently presented.

2. Materials and methods

Briefly, the hCKSAAP_UbSite predictor was constructed based on
the integration of four SVM classifiers' prediction results. Each SVM
classifier was trained with a specific set of features, which is described
in Section 2.2. A summary of the computational framework of our
method is available in Fig. 2.

2.1. Datasets

We collected experimentally validated ubiquitination sites by re-
trieving Uniprot entries or searching recent literature (see Table S1
for the complete list of literature-derived sites). To further enlarge
the dataset, ubiquitination sites identified from two proteomic assays
[23,24] were also incorporated. We then removed the redundant
sequences using the Blastclust program (ftp://ftp.ncbi.nih.gov/blast/
documents/blastclust.html) with a 30% identity cutoff. The whole
dataset was composed of 9537 ubiquitination sites (positive samples)
from 3852 proteins. About one third of the dataset (3419 sites from
1352 proteins) was split out as the independent testing dataset and
the remainder was used to train the predictor. Finally, we randomly
chose equal number of non-ubiquitination sites as negative samples
with one restriction in the training dataset that the sequence distance
between a negative sample to any ubiquitination site in the same pro-
tein should not be smaller than 50 amino acids. This restriction is
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Fig. 1. Sequence logos of (a) yeast dataset and (b) human dataset. The yeast sequence logo is adapted from our previous publication [10] with permission. The significantly enriched or depleted
residues at individual positions surrounding the ubiquitination sites are illustrated. These pictures were rendered using Two Sample Logo server (http://www.twosamplelogo.org/) with
default settings, with the exception that the human dataset's sequence logo was enlarged for clarity.
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Fig. 2. The computational framework of our predictor. First, a 27-amino acid sequence window centered on each ubiquitinated/non-ubiquitinated lysine was extracted from the
protein. The sequence window was then encoded in four different fashions described in Section 2.2. These four groups of encoded features were separately input into SVM models
to generate four independent sets of SVM prediction scores. Finally, the prediction scores of four SVM classifiers were integrated via logistic regression. A certain cutoff was applied

to the combined prediction score to distinguish the ubiquitination site.

applied to avoid overlapping between the surrounding sequence win-
dow of a ubiquitination site and that of a non-ubiquitination site.
Note that there is no such restriction in the testing dataset and the
performance assessment through the independent test is therefore
not over-estimated. The training and testing datasets are available
from the Download page of our server (http://protein.cau.edu.cn/
cksaap_ubsite/download/DatasetForhCKSAAP_UbSite.rar).

2.2. Feature encoding

For each ubiquitinated or non-ubiquitinated lysine, a sequence
window that contains the central lysine and its + 13 flanking residues
was extracted. This window size was previously optimized in the
yeast dataset [10]. Our preliminary test on human dataset also
showed that this window size is optimal for our baseline encoding
(i.e., the CKSAPP encoding). It is possible that the central lysine is lo-
cated near N- or C-terminus of a protein sequence. In such a case, a
truncated sequence window was used for CKSAAP encoding. Howev-
er, for the other encodings, the size of the sequence window was
fixed to 27 residues and the missing positions were filled with residue
“X”s in this study.

2.2.1. CKSAAP encoding

A sequence window can be represented as a combination of mul-
tiple k-spaced amino acid pairs [10], for example, “ExXxE”, whose
space number k is equal to 2. We calculated the composition of each
possible k-spaced amino acid pair i by the following equation:

CKSAAP[i = 1,2, ..., (Kpnay + 1) x 400] = N;/(W—k—1) (1)

where N; is the count of the k-spaced amino acid pair i and W is the
window size. The maximum space taken into consideration (Kmqx)

was optimized to be 5, resulting in a 2400-dimensional feature
vector.

2.2.2. Binary encoding

We encoded amino acid at each position using a 21-dimonsional
binary vector (20 amino acid plus the aforementioned gap-filling
residue “X”). For example, residue A was encoded as the vector
(100000000000000000000). The central lysine was omitted
for encoding, resulting in a total 546-dimensional feature vector.

2.2.3. Amino acid property encodings

The primary physicochemical properties were extracted from the
AAindex database [27]. An amino acid at each position can be repre-
sented as a feature vector that contains 531 raw values of the AAindex
amino acid properties. The number of AAindex amino acid properties
used is slightly smaller than the total number of AAindex entries,
because those entries with missing or uncertain information were
removed before the calculation. We note that the total dimension of
features would be prohibitively high if all of these position-specific
amino acid properties were considered. Therefore, 200 most informa-
tive AAindex features were selected via the minimum redundancy
maximum relevance feature selection approaches (see related refer-
ences [21,28] for details). To avoid over-fitting, the feature selection
was performed based solely on the training samples during cross-
validation tests.

We also introduced another derivative amino acid property, i.e., the
aggregation propensity, to depict the physiochemical properties of
ubiquitination sites and their sequence neighbors. Similar to AAindex,
the aggregation propensity score for each residue in the sequence
window was encoded as an individual feature. Thus the dimension of
the aggregation propensity feature vector should be 27. We used the
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FoldAmyloid tool [29] to predict the aggregation propensity score for
each residue in a protein.

2.3. Predictor training and testing

Each group of feature vectors (i.e. CKSAAP, Binary, AAindex and
residue aggregation propensity) was used as input to train individual
SVM classifiers. We used SVM-light software package (http://
svmlight,joachims.org/) to build the SVM classifiers. The parameters
¢ and gamma of each SVM classifier were optimized separately during
cross-validation tests utilizing grid search strategy. The optimized
cost parameters c of each classifier were 2, 8, 32 and 2, respectively;
while the optimized gamma parameters of each classifier were 2,
27>,27 15 and 277, respectively. The final prediction score P of our
hCKSAAP_UbSite predictor was deduced through a logistic regression
approach, which integrated the outputs of the four individual SVM
classifiers as follows:

P
lo8(p) = Labsi +a @)

where the coefficient b; of each SVM output S; and the constant term a
were deduced through the regression process. By definition, the out-
put P denotes the probability of the central lysine to be ubiquitinated.
The generalized linear model (i.e. the glm function) in R (http://
www.R-project.org/) was used to generate the logistic regression
model.

Five-fold cross-validation tests were performed to preliminarily
assess the performance of the SVM classifiers and the hCKSAAP_
UbSite predictor. In these tests, each time 20% of the data were selected
as the testing fold. The testing fold's SVM outputs were predicted by the
SVM classifiers trained with the rest of data (the training fold). After the
SVM outputs of the whole training dataset were predicted via cross-
validation, we generated five logistic regression models. Each logistic
regression model was generated with the SVM outputs of one training
fold and utilized to integrate its corresponding non-overlapping testing
fold's SVM outputs into final prediction scores. We noted possible
overestimation of the performance through cross-validation tests.
Therefore, the predictor was also strictly benchmarked on the indepen-
dent testing dataset. The SVM outputs of the testing dataset were pre-
dicted by the four SVM classifiers trained with the whole training
dataset. And the final prediction scores were deduced through the logis-
tic regression model which was generated with the whole training
dataset's SVM outputs. The results shows no prominent performance
decrease for the hCKSAAP_UbSite on the independent testing dataset
(see Section 3.2 for details), a significant overestimation via cross-
validation test turns out to be unlikely.

We plotted receiver-operating-characteristic (ROC) curves by
varying the thresholds. Two measurements extracted from the ROC
curve, i.e. the total area under ROC curve (AUC) and the relative area
under ROC curve limiting an up to 10% false positive rate (AUCO01),
were exploited for robust performance evaluation. For both measure-
ments, 1 implies perfect performance. A value of 0.5 and 0.05 indicate
random prediction for AUC and AUCO1, respectively.

3. Results and discussion

3.1. Construction of hCKSAAP_UbSite by integrating amino acid pattern
and properties

CKSAAP encoding is a sequence-based encoding that describes
the spectrum of spaced amino acid pair surrounding a given functional
site. Our previous yeast-specific ubiquitination site predictor CKSAAP_
UbSite is based on this encoding [16]. To scrutinize whether a SVM
classifier using this encoding alone could also effectively predict
human ubiquitination sites, we retrained the SVM classifier using

the comprehensive human training dataset described in Section 2.1.
After parameter optimization, this SVM classifier could reach an AUC
of 0.735 through five-fold cross validation on this balanced dataset
(Table 1), indicating that the overall performance is acceptable.
Because the CKSAAP encoding was also proven to be useful for predic-
tion of yeast ubiquitination sites [10], we attempted to interrogate
possible biological implications of this encoding by analyzing the
most informative k-spaced amino acid pairs in yeast and human
datasets. The top 50 informative k-spaced amino acid pairs were
selected via the minimum redundancy maximum relevance feature
selection approaches [21,28] (Table S2). As depicted in Figure S2, the
residue usage of the most informative k-spaced amino acid pairs are
not uniformly distributed for both yeast and human (Kolmogorov-
Smirnov test, P = 0.010 and P = 0.024). But the residue usages be-
tween these two groups of k-spaced amino acid pairs seem not to be
totally different (Kolmogorov-Smirnov test, P = 0.81), indicating
that only a few residues exhibit prominent bias of usage. An intuitive
and simple reason of such bias could be attributed to the dramatic di-
vergent evolution of the ubiquitination E3 ligase enzymes from yeast
to human [2,30]. However, apart from this, we speculate that some
other related factors also exist. An example is the overrepresentation
of the acidic residue (D and E) pairs for yeast ubiquitination sites.
This may be partially explained by the residue composition near the
catalytic core of the ubiquitination E2 conjugating enzymes. Indeed,
some of the yeast ubiquitination E2 enzymes allocate more positively
charged residues in proximity to their catalytic core (e.g. the Fig. 3 in
[31]), thereby favoring acidic residues around the yeast ubiquitination
sites. Another example is the enrichment of amino acid pairs com-
posed of one or more hydrophobic residues (e.g. L, F and Y) in the
vicinity of the human ubiquitination sites. This preference can be cor-
related with the frequent occurrence of human ubiquitination sites in
the folded protein domains [32]. An alternative explanation is related
to the proteasome activity. Biochemical assays have revealed strong
catalytic activity of the human proteasome at hydrophobic residues
of the substrates [33]. Considering the close relationship between
ubiquitination and proteasomal degradation [3], it is possible that
the allocation of some hydrophobic residues around the human
ubiquitination sites might offer advantages of facilitating the protein
degradation. A third example is the significant depletion of cysteine
amino acid pairs around the yeast and human's ubiquitination sites.
Recent proteomic experiments have revealed a considerable quantity
of cysteine ubiquitination sites in yeast proteins [34], indicating that
the co-occurrence of cysteine ubiquitination and lysine ubiquitination
is possible. It is therefore plausible that cysteine residues are selected
against in the vicinity of the ubiquitinated lysine to avoid direct com-
petition, especially in human whose ubiquitination system is larger
and more complicated [30]. Although the above implications could
be interesting, we wish to emphasize that all of the above speculations
should be carefully examined with biochemical assays in the near
future.

In contrast to the overall performance of the CKSAPP encoding,
the accuracy is likely to be decreased when the false positive rate
is limited to be low (i.e., AUCO1 = 0.169, see also Table 1). The
CKSAAP encoding was capable of robustly discovering the cryptic in-
formation about the possible motifs around the ubiquitination sites
irrespective of the exact positions where the motifs are located.

Table 1

The performance of single and combined classifiers.
Predictor AUC AUCO1
CKSAAP 0.735 0.169
CKSAAP + Binary 0.761 0.206
CKSAAP + Binary + AAindex 0.766 0.216
hCKSAAP_UbSite 0.770 0.226

(CKSAAP + Binary + AAindex + Aggregation propensity)
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However, discarding position-specific information on the other hand
might reduce the sensitivity of a predictor. Indeed, the CKSAAP-based
classifier could predict only 30.3% of the ubiquitination sites at the
90% specificity level, evaluated by the cross-validation test (Fig. S1).
To examine if there is any position-specific information about the
human ubiquitination sites that was omitted by CKSAAP, we generated
sequence logos [25] to depict the sequence pattern around human
ubiquitination sites. In addition to the significant divergence of the
amino acid usage propensity between yeast and human ubiquitination
sites, the overall distribution of informative residues for these two
groups of sites is significantly different (Fig. 1). The yeast ubiquitination
sites are characterized by widespread glutamic acid (E) residues across
the upstream — 9 and downstream + 8 positions, while the amino acid
preference in human ubiquitination sites seems to differ from one posi-
tion to another. For example, the arginine (R) residues are depleted at
the nearest positions from the human ubiquitination sites but become
enriched at relatively distal positions (Fig. 1). Therefore, it is of particu-
lar interest to examine the possibility of boosting the predictor if the
position-specific amino acid pattern encoding was introduced.

Consequently, the binary encoding-based SVM classifier was in-
corporated to the predictive framework. After integrating such a
position-specific encoding, a major augment of performance was ob-
served (Table 1). Specifically, an 18% increase of AUCO1 (from 0.169
to 0.206) indicates a significant improvement in the predictor's sensi-
tivity. Although this binary encoding is position-specific, we would
like to emphasize that it is not equivalent to the position-specific
scoring matrix. The latter reflects the evolutionary information of
functional sites rather than the sequence pattern of the sites them-
selves. In fact, results of our cross-validation tests suggest that even
profile-CKSAAP [13], a sophisticated method integrating CKSAAP
encoding with the position-specific scoring matrix, failed to signifi-
cantly improve the original CKSAAP classifier (data not shown).

To better exploit position-specific information, a third SVM classi-
fier trained with amino acid property encoding, namely positional
AAindex value, was established and added to the predictive frame-
work. To avoid use of excessive number of features, only 200 most
informative features were considered. Interestingly, all of these top
features came from positions —2, —1, +1 and +2 to the central
lysine. This highlights the importance of the proximal residues to reg-
ulate local physiochemical properties and control the specificity of
ubiquitination. As the physicochemical properties were utilized by
UbiPred in a distinct fashion [8], we here compared the informative
properties demonstrated by Tung et al. [8] and those proposed by
us. In our human training dataset, the most informative features
contain polarity, principal component I, atom-based hydrophobic
moment and helix termination parameter at position j + 1 (AAindex
IDs: ZIM]680103, SNEP660101, EISD860102 and FINA910104), all of
which are highly discriminative at 4 out of 27 positions in the local
sequence window. Due to the differences in the datasets and feature
selection methods, the top features reported by the two studies are
largely not overlapping with each other. For example, although the
average reduced distance for side chain (AAindex ID: MEIH800102)
has been shown to be important for ubiquitination site prediction
[8], this feature was not included in our top feature list. Nevertheless,
there is a limited agreement between the two sets of informative fea-
tures. For example, the linker propensity (AAindex ID: GEOR030108)
was suggested to be informative in both studies. A more comprehen-
sive list of the top informative amino acid properties selected based
on our dataset is provided in Table S3.

We are also aware of the fact that some derivative residue proper-
ties, such as secondary structure, solvent accessibility and disorder
propensity have been previously proposed to predict ubiquitination
sites [9,21,26]. Therefore, we predicted the secondary structure of
each position in the sequence window by PSIPRED [35] and encoded
this information as an 81-dimensional (3 x 27) binary feature vector.
The SVM classifier trained with this feature showed an unsatisfactory

performance (AUC = 0.588), indicating that the secondary structure
is not very informative for predicting human ubiquitination sites.
Similar results have been obtained for solvent accessibility and disor-
der propensity when these features were encoded in binary fashion
(data not shown). In contrast, classifiers that exploited the residue
aggregation propensity score showed an unexpected moderate per-
formance (AUC = 0.676). Moreover, incorporation of the output of
this SVM classifier as the fourth component of the predictor could
further improve the performance, especially in terms of AUCO1
(Table 1). We calculated the mean residue aggregation propensity at
each position of the sequence window, and found that ubiquitinated
lysines and residues in the proximity tend to have higher aggregation
propensity than the non-ubiquitinated counterparts (paired t-test,
P = 1.53 x 10~ ®). To the best of our knowledge, no direct association
between the residue aggregation propensity and ubiquitination has
been previously reported. Here, we provide two hypotheses as to
how this association is established. The first one is that, as a major
function of the ubiquitination is to tag the misfolded or aggregated
polypeptides in the cell to be degraded through proteolytic or autoph-
agic pathways [3,23,36], organisms tend to allocate the ubiquitination
sites onto aggregation prone regions to better monitor the in vivo
aggregation of polypeptides. An alternative explanation, however, is
not directly related to the aggregation phenomenon. Instead, we
note the fact that ubiquitination is often catalyzed by a protein com-
plex through direct protein-protein interaction (for example, see
Tian et al. [37]). We thus speculate that ubiquitination sites have a
tendency to be localized on or close to the protein-protein interaction
interface whose aggregation propensity is naturally higher [38]. Whether
these hypotheses hold or not, however, should be tested through exper-
imental investigations and is beyond the scope of this study.

Our hCKSAAP_UbSite builds upon the integration of the four
aforementioned SVM classifiers using logistic regression. It should
be noticed that the overall performance may also be attributed to
the reasonable integration of all the four predictors. Indeed, casual
integration of four classifiers by summing their prediction scores did
not improve the predictor as much as the logistic regression in the
cross-validation test (AUC = 0.749). According to the final logistic
regression model, the output scores of CKSAAP-based SVM classifier
have the highest Z-score (Z = 21.7), indicating that it has the highest
discriminative capability. We used McKelvey and Zavoina's Pseudo R?
[39] to estimate how much variation is explained by individual sets of
prediction scores or their combination. The four sets of prediction
scores taken together accounted for about 30.5% of the variation.
The best-fit logistic regression using the outputs of CKSAAP-based
SVM only reported that about 23.0% variation was explained. This jus-
tifies the usage of CKSAAP as the baseline classifier in our predictor
while emphasizing on the indispensible importance of the other
three classifiers.

3.2. Performance assessment of hCKSAAP_UbSite via independent test

We have demonstrated that hCKSAAP_UbSite could achieve a
promising prediction performance in the 5-fold cross-validation test.
To objectively evaluate our predictor, we further tested our method
on an independent dataset. As described, this independent dataset has
3419 ubiquitination sites and an equal number of non-ubiquitination
as negative samples. The size of our independent dataset is more than
10 folds larger than the independent datasets used in previous studies
[10,21] which guarantees a much more robust performance assess-
ment. Moreover, because the proteins in the independent dataset
were randomly selected from a non-redundant group of proteins and
no homologous information has been exploited by our predictor, the
performance is less likely to be over-estimated due to the presence of
sequence homology.

The result for hCKSAAP_UbSite of the independent test generally
agreed well with that of the cross-validation tests, with a slight decrease
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to some extent (Fig. 3 and Table S4). In addition, we are aware of a
noticeable decrease of the CKSAAP-based SVM classifier's performance.
One possible reason is that the high dimension of the CKSAAP feature
vector makes this SVM classifier prone to be over-fitting through
model optimization. Nevertheless, a considerable increase of the overall
performance after the integration of the other three classifiers was
observed again. The final predictor hCKSAAP_UDbSite achieved an AUC
as high as 0.757 on this independent test. Note that the gap between
the performance assessed by cross-validation test (Table 1) and that
assessed by independent test (Fig. 3 and Table S4) was also narrowed
down via this integration, implying the necessity of integrating all
four classifiers to achieve the robust prediction of ubiquitination sites.
Finally, we also tested the performance of our yeast ubiquitination site
predictor CKSAAP_UDSite [10] on this human dataset. As expected, the
yeast-centric predictor did not effectively predict human ubiquitination
sites (Fig. 3 and Table S4). Similar results were obtained when the other
two ubiquitination site predictors UbPred and UbiPred were evaluated
on this independent test. None of these predictors was specifically
designed to predict human ubiquitination sites, and none of them pro-
duced predictions with satisfying accuracy (Fig. 3 and Table S4). These
results confirm again that construction of a human-specific predictor
is necessary and crucial.

3.3. Server implementation

To facilitate the users, hCKSAPP_UbSite has been integrated into
our existing CKSAAP_UbSite server (http://protein.cau.edu.cn/cksaap_
ubsite/). Neither registration nor license acquisition is required for
academic usage of this server. Users have options to choose which pre-
dictor (yeast- or human-specific) to be used when submitting their
queries. For prediction analysis of protein sequences from some distinct
groups of organisms like plants, the users should be very careful
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Fig. 3. The ROC curves of several predictors on the independent test. The predictors
include the CKSAAP-based SVM classifier (CKSAAP), the predictor integrating four
SVM classifiers (hCKSAAP_UDSite), our previous yeast ubiquitination site predictor
(CKSAAP_UDbSite) and two publicly available ubiquitination site predictors (UbiPred
and UbPred). The UbiPred prediction results were obtained by submitting the indepen-
dent test set directly to its online server. The downloadable version of UbPred was used
because a direct submission of such a large-scale test set to the UbPred server will
result in a prohibitively heavy burden. The AUC and AUCO1 of the corresponding pre-
dictors are also provided.

because either predictor may not provide satisfactory predictions in
these distinct organisms.

After a raw- or FASTA-formatted sequence is submitted to our
server, the user will be redirected to the result webpage where the
prediction score of individual SVM classifier and the final prediction
score will be presented. Fig. S3 provides a sample screenshot of the re-
sult webpage. Generally, it takes 1 to 3 min to predict the ubiquitination
site for a protein sequence shorter than 1000 amino acids. But there is
no need to bookmark this webpage or keep it open because a hyperlink
to this result page will be sent to the user's E-mail address when the
task is accomplished. A prediction result is usually kept for one month
in our server. As a public server, we have also made recent prediction
results accessible in the job list.

4. Concluding remarks

We have presented a new ubiquitination site predictor specifically
developed to predict human ubiquitination sites. Different from our
previous work [10], in this study, the SVM classifiers utilizing various
encodings of ubiquitination sites and their sequence neighbors have
been integrated into a logistic regression framework. The features
used in our method include a variety of important aspects of amino
acid patterns and propensities. To the best of our knowledge, one
such feature, residue aggregation propensity, is proposed as an indi-
cator of ubiquitination site for the first time. As a result, our novel
predictor has consistently achieved a better performance and robust-
ness compared with the predictor using the CKSAAP encoding alone.
Due to this considerable performance improvement on our datasets,
we have made hCKSAAP_UDbSite freely available as a component of
our public ubiquitination site prediction server.

Given the significant difference in amino acid preference between
the sequence neighbors of human ubiquitination sites and yeast
counterparts, a yeast ubiquitination site predictor usually fails to pre-
dict human ubiquitination sites with high accuracy. However, it has
been noticed that human ubiquitination sites identified by different
high-throughput proteomic screens also do not well agree with each
other (see for example [40]). Therefore, it is possible that our method
can be further improved with the increasing quality of proteomic data
in the near future.
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