
 Protein & Peptide Letters, 2007, 14, 291-297 291 

  0929-8665/07 $50.00+.00 © 2007 Bentham Science Publishers Ltd. 

Genome-Wide Analysis of Enzyme Structure-Function Combination 
Across Three Domains of Life 

Ziding Zhang* and Yu-Rong Tang
 

Bioinformatics Center, College of Biological Sciences, China Agricultural University, Beijing 100094, China 

Abstract: To investigate diverse enzyme structure-function combination (SFC) types in different species, 34 different ge-

nome sequences were annotated using the protein catalytic domain database SCOPEC (http://www.enzome.com/ 

enzome/), in which both the structure and function for each entry are known. Annotated enzymes with catalytic domains 

from the same SCOP superfamily are considered to have an identical structure. Annotated enzymes sharing the identical 

three-digit EC number are considered to have the same enzymatic function. Results reveal that the different SFC types for 

enzymes identified in archaea, bacteria and eukaryota are 137, 300 and 313, respectively. About 80% of the SFCs identi-

fied in archaea can be consistently found in bacteria and eukaryota species, whereas 28% and 35% combination types in 

bacteria and eukaryota respectively are unique to their corresponding groups. The number of functions per structure and 

the number of structures per function for the annotated sequences were measured in different species. Furthermore, a new 

concept was proposed to represent enzymatic structures as a functional similarity network. Thus, the current study will be 

helpful to enhance the global view on the evolution of enzymatic structure and function.  
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INTRODUCTION 

 To discover new enzymes and design new drugs, in silico 
functional annotation of a large number of enzyme se-
quences obtained from genomic and proteomic studies is 
becoming increasingly important. The classical bioinformat-
ics method of assigning functions to a query enzyme se-
quence requires the identification of homologous sequences 
with known functional annotation. Subsequently, the func-
tional class (e.g. Enzyme Classification (EC) number) for the 
identified homolog can be transferred to the query sequence. 
However, in some cases such methods can be misleading due 
to the fact that enzyme functions are less conserved [1, 2]. It 
was observed that the conservation of function between a 
pair of enzymes becomes questionable when sequence iden-
tity drops below 40% [2, 3]. In addition to the sequence simi-
larity based annotation (i.e. sequence alignment-based meth-
ods), prediction of an enzyme’s family class based on its 
sequence property such as amino acid composition has been 
intensively investigated [4-10], which is also playing an im-
portant role in accelerating the annotation of functional un-
known enzyme sequences.  

 Since protein 3D structure is much more conserved than 
sequence and closely related to protein function, structural 
comparisons were therefore able to identify functional rela-
tionships even when no clear sequence similarity was detect-
able provided that the 3D structure for the targeting sequence 
can be obtained by experimental or computational studies 
[11]. Such “structure-based functional annotation” can offer 
in-depth insight by often highlighting the 3D structural ar-
rangements for the catalytic residues. Even so, the power 
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of structure-based annotation is often weakened by the fact 
that a similar fold does not necessarily imply a similar func-
tion. For example, enzymes with the same fold, like TIM 
barrels, can have multiple functions [12]. On the other hand, 
proteins from different folds, such as subtilisin and trypsin, 
can share a similar function [13]. Therefore, further under-
standing of the relationship between enzyme structure and 
function remains an important topic in the field of structural 
biology.  

 The accumulated enzyme structures deposited in PDB 
database [14] have provided essential insight into the rela-
tionship between enzyme function and structure. Further-
more, the 3D structures for the catalytic residues have also 
been investigated and the corresponding database has been 
constructed [15]. Recently, a database of protein catalytic 
domains – SCOPEC was compiled (http://www.enzome. 
com/enzome/). By adding the verified functional information 
(i.e. EC number) into the SCOP structural domains, 
SCOPEC ensures that the domain-EC annotation is correct. 
Each EC number is defined as a four-digit code, which rep-
resents a hierarchy of functional classification of catalytic 
reaction. Similar to EC scheme, SCOP domain is also hierar-
chical with all domains classified by structural class, fol-
lowed by fold, superfamily and family [16,17]. Furthermore, 
the elegant analysis of domain-EC relationships in SCOPEC 
highlights the evolution of protein structure and function 
[18]. Representing about 75% enzymes with known struc-
tures, SCOPEC can be a valuable resource in the analysis 
and prediction of protein structure and function.  

 With a growing number of sequenced genomes, compara-
tive studies have been carried out to identify the differences 
of protein sequence or structure among three domains of life 
[19-24]. By mapping genome sequences into functional 
known enzyme categories, a comprehensive analysis was 
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recently performed to estimate the fraction of enzymes in 
genomes and to determine the extent of their functional re-
dundancy in different genomes [23]. The availability of 
SCOPEC allows us to systematically investigate enzyme 
Structure-Function Combination (SFC) types across three 
domains of life. 

 By representing complex systems as networks of interac-
tions between their components [25], the study of such net-
works is recently gaining importance in biological disci-
plines. Efforts have been made to apply network concepts to 
describe protein molecular world, such as protein-protein 
interactions [26-28], interactions within protein domain 
families [29, 30], residue contacts within protein structures 
[31, 32], conformational spaces of transition-states in protein 
folding [33], protein family/fold occurrence and distribution 
in genomes [34], protein structural similarity networks [35] 
and similarity networks of protein binding sites [36], etc. 
These investigations have provided systematic and deeper 
understanding of the evolution and diversity of proteins. 

 In this study, we first attempted to annotate different ge-
nome sequences by using BLAST searching [37] against 
SCOPEC sequence database. For each annotated protein 
sequence, the predicted function (EC 3-digit level) and pre-
dicted structure (SCOP superfamily level) is regarded as one 
enzymatic SFC type. Annotated enzymes with catalytic do-
mains from the same superfamily are considered to have an 
identical structure. Annotated enzymes sharing the identical 
three-digit EC number are considered to have the same en-
zymatic function. Thus, the occurrence of different SFCs in 
different species can be analyzed, which allows us to have a 
global view on enzymatic SFC types in three different do-
mains of life. Moreover, a novel network of enzyme struc-
tures is constructed by considering their functional similar-
ity. In the last part of this paper, the potential applications of 
the obtained network are discussed. 

MATERIALS AND METHODS 

Data Sets 

 The SCOPEC database, downloaded from http://www. 
enzome.com/enzome/, was employed to derive enzyme SFC 
types in different genomes. Based on SCOP database (ver-
sion 1.63) [16], the current SCOPEC database contains 
15761 catalytic domains, covering 250 folds, 340 superfami-
lies and 593 families. Structural domains in the same super-
family share distinctive features that suggest a common evo-
lutionary ancestor. Therefore, here enzymes from the same 
SCOP superfamily are considered to have the same structure. 
Concerning an EC number, the first digit indicates a general 
level of function. Subsequent digits indicate more specific 
features of the catalytic reaction through subclass, sub-
subclass and finally a serial number, often used to distin-
guish different substrate specificities. The current SCOPEC 
includes 141 and 771 different EC numbers at three-digit 
level and four-digit level, respectively. It has been well ob-
served that substrate specificity, measured at the fourth–level 
EC number, is not conserved within homologues, whereas 
function, measured at the third EC level, is often conserved 
[18, 23]. Furthermore, the fourth EC number for some en-
zymes in SCOPEC database is unknown and it is denoted as  
 

“-“. In this work, therefore enzymes sharing the identical 
three-digit EC number are considered to have the same func-
tion.  

 A set of 6 eukaryotic, 9 archaeal, and 17 bacterial ge-
nomes sampled over 100 finished genome sequences, as ini-
tially selected by Caetano-Anolles and Caetano-Anolles [20], 
was utilized for the genome-wide investigation of enzymatic 
SFC types. Additionally, two other eukaryotic species (H. 
Sapiens and M. musculus) were also included. Thus, the 34 
different species were analyzed in this study. Their corre-
sponding protein sequences were downloaded from the web-
site of NCBI (http://www.ncbi.nlm.nih.gov/).  

Mapping Genome Sequences into SCOPEC Database 

 For each sequence within the genomes under investiga-

tion, a BLAST searching [37] was performed against the 

SCOPEC sequence database. All the parameters for BLAST 

searching were set as the default values defined in the 

BLAST package. Since the BLAST searching only generates 

local alignments, the ClustalW algorithm [38] was further 

employed to obtain a global alignment between the query 

sequence and the top hit from BLAST searching. Finally, the 

sequence identity between the query sequence and the top hit 

was counted as follows. For instance, if the top hit (sequence 

length = Nh) shares Nid identical residues with the query se-

quence (sequence length = Nq), the sequence identity is de-

fined as: SeqId%= %100
h

id

N
N . In this study, if the se-

quence identity is  40%, the top hit is assigned as a confi-

dent annotation. 

 For each annotated sequence, the predicted function (EC 
3-digit level) and predicted structure (superfamily level) is 
regarded as one enzymatic SFC type. Thus, the total numbers 
of different enzymatic SFC types identified in archaea, bac-
teria and eukaryota were calculated. In each genome, two 
parameters were measured for all the annotated enzymes, 1) 
the number of functions per structure and 2) the number of 
structures per function. 

Construction of a Functional Similarity Network for En-

zyme Structures 

 Each SCOP superfamily is regarded as an enzyme struc-
ture provided that it adopts at least one enzymatic function. 
Then, all the enzyme structures (i.e. SCOP superfamilies) 
compose the nodes in the network, and an edge is assigned 
between two nodes if they can adopt at least one identical 
enzymatic function (i.e. EC 3-digit level). For instance, su-
perfamily A adopts M different enzymatic functions, 
whereas superfamily B can have N different enzymatic func-
tions. If at least one function can be overlapped in these M 
and N functions mentioned above, an edge is assigned be-
tween these two nodes (superfamily A and superfamily B). 
Based on the enzymatic structures and functions presented in 
the SCOPEC database, archaea species, bacteria species and 
eukaryota species, four functional similarity networks 
(SCOPEC-FSN, archaea-FSN, bacteria-FSN and eukaryota-
FSN) were constructed. 

 

Not For Distribution



Genome-Wide Analysis of Enzyme Structure-Function Protein & Peptide Letters, 2007, Vol. 14, No. 3    293 

RESULTS AND DISCUSSION 

Occurrence of Enzymatic SFC Types in Different Ge-

nomes 

 To investigate enzymatic SFC types in different species, 
34 different genomic sequences were annotated using 
SCOPEC database. The fraction of confidently annotated 
sequences within these 34 genomes is low, ranged from 2% 

to 13% (cf. Table 1). The average annotation rate of the ar-
chaeal species is 005.0030.0 ± , while the higher annotation 
rates are observed in the bacterial and eukaryotic species 
( 019.0062.0 ±  and 011.0050.0 ± , respectively).  

 137 different SFC types are identified in archaea, 115 of 
which also consistently appeared in bacteria and eukaryota 
(Fig. 1). A larger number of SFC types (300 types) occur in 

Table 1. Size and Fraction of Structure and Function known Enzyme Sets in Different Species 
a
 

Species Proteome size Number of annotated enzymes Fraction of annotated enzymes 

E   H. sapiens 27960 1561 0.056 

M. musculus 26650 1382 0.052 

D. melanogaster 18941 1034 0.055 

C. elegans 21124 607 0.029 

S. cerevisiae 5862 366 0.062 

S. pombe 5034 301 0.060 

N. crassa 11857 514 0.043 

A. thaliana 28860 1292 0.045 

B B. burgdorferi 851 36 0.051 

H. pylori 1576 90 0.057 

M. genitalium 484 28 0.058 

M. pneumoniae 689 34 0.049 

T. pallidum 1036 49 0.047 

C. pneumoniae 1112 61 0.055 

R. prowazekii 835 59 0.071 

D. radiodurans 2629 157 0.060 

E. coli 5379 373 0.069 

B. subtilis 4105 266 0.065 

M. tuberculosis 4189 203 0.048 

S. aureus 2615 177 0.068 

S.sp PCC 6803 3167 170 0.054 

A. aeolicus 1529 111 0.072 

H. influenzae 1657 214 0.129 

C. acetobutylicum 3672 171 0.047 

T. maritima 1858 112 0.060 

A A. fulgidus 2420 82 0.034 

M. thermautotrophicus 1873 60 0.032 

P. horikoshii 1955 59 0.030 

M. jannaschii 1729 58 0.034 

H.sp NRC-1 2075 72 0.035 

T. acidophilum 1482 53 0.035 

S. solfataricus 2977 67 0.023 

S. tokodaii 2825 59 0.021 

A. pernix 1841 52 0.028 

a E, eukaryota; B, bacteria; A, archaea 
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bacterial species. Of them, about 28% combination types 
remain unique in bacteria. Interestingly, only a slightly larger 
number of SFC types (313 types) in eukaryotic species are 
observed, including about 35% unique types (cf. Fig. 1). One 
possible explanation is that a much larger genome size in 
eukaryotic genomes can make use of multiple copies of some 
SFC types instead of inventing new ones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Venn diagram shows the distribution of different 

enzymatic structure and function combination types in three differ-

ent domains of life. 

Inferring Structure and Function from Sequence 

 As the structures and functions have been experimentally 
characterized for only a very limited number of enzymes, 
investigation on the enzyme SFC types per species requires 
the inference of structural and functional information from 
sequence. Previous studies have shown that enzymes with  
40% sequence identity share in most cases the same function 
(e.g. identical 3-digit EC number) [2, 3]. Therefore, using a 
cut-off of 40% sequence identity allows us to transfer the 
functional annotation from the top BLAST hit to the query 
sequence with reasonable confidence. Considering only local 
alignments obtained from BLAST program, the sequence 
identity based on a global alignment between the query se-
quence and the top BLAST hit was calculated using 
ClustalW algorithm. Furthermore, the sequence length of the 
top BLAST hit was used as the reference to calculate the 
identity. Since each entry in the SCOPEC database repre-
sents one catalytic domain, the query sequence should con-
tain a domain with the same function as the top BLAST hit if 
they share  40% sequence identity. Generally protein 
structure is much more conserved than sequence, therefore a 
40% cut-off sequence identity can also be reasonable to 
claim that the query sequence should contain a similar struc-
tural domain as the top BLAST hit. In some cases, the query 
sequence may contain multiple catalytic domains. Thus, at-
tention on the second or other lower rank hits may be helpful 
for annotating other catalytic domains in the query sequence. 
It should be pointed out, however, only the top BLAST hit 
was analyzed in the current analysis.  

 Similar strategy was previously used by Freilich et al. 
[23] to annotate enzymatic functions for protein sequences 
with the purpose of investigating the complement of enzy-
matic sets in different species. To study enzyme SFC types 
in different species, it needs to be emphasized that in this 
work only SCOPEC was used to annotate genome se-
quences. It has been well accepted that other sensitive pro-
file-based sequence searching algorithms (e.g. PSI-BLAST 
[37]) may identify more distantly related homologues and 
increase the rate of annotation. Such distant relatives may 
have often evolved into new functions [3], therefore the pro-
file-based searching was not used in this work. 

Evolution of Enzyme Structure and Function 

 For the annotated proteins in each genome, the structural 
diversity in each enzymatic function and the functional di-
versity in each superfamily are observed. The larger number 
of superfamilies per function versus functions per superfa-
mily observed in each genome (cf. Fig. 2) suggests that na-
ture re-invents function (convergent evolution). Following a 
re-invention, it is likely that modification leads to new 
specificities of function (divergent evolution) [39]. The 
overall evolutionary relationship of enzymatic structure and 
function in each genome is in line with that reported by 
George et al. [18], which in turn is based on the whole 
SCOPEC database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Measures of the ECs (3-digit level) per SCOP superfa-

mily and the SCOP superfamilies per EC (3-digit level) in eukary-

otic ( ), archaeal (�), and bacterial ( ) genomes. 

 

 A similar relationship between functional diversity and 

structural diversity exists in each archaea genome (Fig. 2). 

Compared with archaea species, eukaryota species demon-

strate a significant larger number of superfamilies per func-

tion as well as a larger number of functions per superfamily. 

Compared with archaea and eukaryota species, the relation-

ships between functional diversity and structural diversity 

are quite different within different bacterial genomes. The 

ratio ( dcR / ) between the number of superfamilies per func-

tion and the number of functions per superfamily in each 

genome can reflect the relative effect of convergent and di-
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vergent evolutions. For all the eukaryotic species under scru-

tiny, the average dcR /  is 03.058.1 ± , which is larger than 

that of the archaeal genomes ( 05.029.1 ± ). Compared with 

archaea, the convergent evolution is more dominant in eu-

karyota. It has been observed that the dcR / value of bacterial 

genomes is ranging from 1.22 to 1.77 (the average value is 

13.046.1 ± ). The highly diverse distribution of dcR /  in 

bacterial genomes suggests the dual behaviours of conver-

gent and divergent evolutions exist in bacteria. The 

dcR / values of some bacterial genomes are close to those of 

archaeal genomes, while the dcR / values of some other bac-

terial genomes are close to those of eukaryotic genomes (cf. 

Fig. 2). Additionally, it is also interesting to mention that the 

statistical analyses of functions per structure and structures 

per function in E. coli were previously measured by Tsoka 

and Ouzounis [40], which are in good agreement with our 

current results.  

Connectivity within Functional Similarity Network of En-

zyme Structure 

 A novel way to represent the enzyme structures as a func-
tional similarity network has been proposed. Based on the 
enzyme structures and functions presented in SCOPEC data-
base, archaea species, bacteria species and eukaryota species, 
four networks (SCOPEC-FSN, archaea-FSN, bacteria-FSN 
and eukaryota-FSN) are constructed, which are further char-
acterized in Table 2. The average connectivity of a network 
is defined as the average value of the number of links (edges) 
for each node within the network. Generally, the average 
connectivity values in bacteria-FSN and eukaryota-FSN are 
close, which are much larger than that of archaea-FSN. To a 
certain extent, the average connectivity for archaea-FSN, 
bacteria-FSN and eukaryota-FSN reflects the convergent 
evolution in different kingdoms of life. Therefore, a larger 
number of the average connectivity in bacteria-FSN and eu-
karyota-FSN is in line with more significant convergent evo-
lution observed in bacteria and eukaryota. Considering the 
rule for deriving functional similarity network, it is not sur-
prising that the number of edges for each node (i.e. connec-
tivity) in the network is linearly correlated with the number 
of ECs for the corresponding superfamily (the correlation 
coefficient is 0.765). The characteristic path length is defined 
as the number of links in the shortest path between two 
nodes averaged over all pairs of nodes, which is also charac-
terized in Table 2. Interestingly, the characteristic path 

lengths for bacteria-FSN and eukaryota-FSN are similar, 
which are significantly larger than that of archaea-FSN. 

 Subsequently, we attempted to determine if this func-
tional similarity network is a scale-free network. Scale-free 
networks typically have many nodes with few links and have 
only few highly connected ones [25]. In contrast to a random 
network in which the connectivity distribution obeys a Pois-
son distribution, the probability )(kP  of nodes having k 
edges, decays as a power law = kkP )(  in scale-free net-
works. As shown in Fig. 3, SCOPEC-FSN is significantly 
deviated from a Poisson distribution as well as poorly fitted 
with a power-law distribution. Therefore, SCOPEC-FSN can 
not be assigned as a scale-free network. The similar distribu-
tions were also observed in the archaea-FSN, bacteria-FSN 
and eukaryota-FSN networks. It can be envisaged that such 
functional similarity network could be constructed for each 
genome, thus it will provide a deeper investigation on the 
differences of enzyme structure and function relationship in 
different species. However, the low fraction of sequences 
annotated by SCOPEC makes the network based on each 
genome far to be complete, thus a higher fraction of anno-
tated sequences is required in the future to facilitate such 
analysis. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The distribution of node connectivity in the SCOPEC-

FSN network.  

Highly Connected Hubs in Functional Similarity Network 

 Several highly connected hubs have been identified in 
these newly derived functional similarity networks. The top 
ten hubs in each of these four networks are overlapped to a 

Table 2. The Average Connectivity and Characteristic Path Length of Different Functional Similarity Networks of Enzyme Struc-

tures 

 Number of nodes Average connectivity Characteristic path length 

SCOPEC-FSN 324 11.0 3.2 

Archaea-FSN  85 4.1 2.3 

Bacteria-FSN 183 7.8 3.5 

Eukaryota-FSN 195 7.6 3.6 
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certain extent. For the top ten hubs in SCOPEC-FSN (cf. 
Table 3), six, eight and seven hubs appear as the top hubs in 
archaea-FSN, bacteria-FSN and eukaryota-FSN, respec-
tively. 

 Of these top ten hubs in SCOPEC-FSN, nine hubs belong 
to /  structural class and the remained one is from  struc-
tural class. The reason for the hubs highly occurred in /  
structural class could be due to that the combination of rigid 
surface formed by -sheets with the conformational flexibil-
ity provided by -helices makes these scaffolds more suit-
able for enzymatic function [41]. As reported by George et 
al. [18], the most popular enzymatic structures in SCOPEC 
database are the PLP-dependent transferases (c.67.1), /  
hydrolases (c.69.1), P-loop containing nucleotide triphos-
phate hydrolases (c.37.1) and NAD(P)-binding Rossmann-
fold domains (c.2.1). It is not surprising that the above four 
superfamilies are ranked as the top ten hubs in the SCOPEC-
FSN network.  

 Three of these top ten hubs are grouped into the fold of 
TIM / -barrel, but none of them can adopt more than 6 
different ECs (three-digit level) [18]. This means that the top 
hubs are not necessary to be the superfamilies with multiple 
functions. To be one of the top hubs in SCOPEC-FSN, the 
superfamily should satisfy with at least one of the following 
two criteria: 1) The superfamily should host multiple func-
tions; 2) The superfamily should have functions which are 
widely adopted by other superfamilies. 

 It has also been observed that in some cases the evolution 
of protein structure, function and domain-domain interaction 
is interconnected. As reported in [20], the phylogenetic tree 
of protein architectures identified three /  folds as the most 
ancestral. They are c.37, c.1 and c.2, ordered from more to 
less ancestral. Interestingly, 5 out of the top ten hubs in 
SCOPEC-FSN can be grouped into these three most ances-
tral folds (cf. Table 3). Recently, the large-scale protein 

structural interactome suggested 19 SCOP superfamilies as 
the most interactive superfamilies [42]. Also interestingly 
enough, two out of these 19 superfamilies (i.e. c.37.1 and 
c.2.1) appear as top-ranked hubs in SCOPEC-FSN network. 
All together these data suggest that some ancestral folds (e.g. 
c.37.1 and c.2.1) are favored to host different enzymatic 
functions. Meanwhile, they are able to easily “combine” with 
many other protein domains to support diverse biological 
functions.  

Applications of Functional Similarity Networks 

 The established functional similarity network of enzy-
matic structures is opening avenues for several potential ap-
plications. Historically, both the function and structure data-
bases of enzymes are organized in hierarchical ways. In the 
future, the enzyme structure and function database can be 
presented in a network graph, which may provide a more 
intuitive understanding in the relationship of enzymatic 
structure and function. A second application could be identi-
fied in the area of de novo enzyme molecular design [43]. 
Undoubtedly, the availability of such an extensive similarity 
network of enzymatic structures will provide a priori knowl-
edge of de novo designability for a specific enzymatic struc-
ture under scrutiny. A third immediate application concerns 
enzyme function prediction by searching enzymatic struc-
tures for 3D residue patterns resembling known catalytic 
sites [44]. The structural genomics projects are determining 
the structures of many proteins with unknown functions. 
Therefore, searching for 3D residue patterns is a useful com-
plement to the classical methods based on sequence or over-
all structural similarities. Mapping a structure under scrutiny 
into the above functional similarity network may provide an 
optimal searching path. For example, the searching priority 
should be given to those catalytic sites represented in the 
neighboring nodes of the query structure. 

Table 3. The Ten Most Highly Connected Superfamilies within the Functional Similarity Network of SCOPEC-FSN.
a
 

 Superfamily  Description of superfamily
 

Description of fold 
 

Number of 

connectivity 

1 c.1.2 Ribulose-phoshate binding barrel TIM beta/alpha-barrel 56 

2 c.67.1 PLP-dependent transferases PLP-dependent transferases 52 

3 c.2.1 NAD(P)-binding Rossmann-fold domains NAD(P)-binding Rossmann-fold domains 52 

4 c.69.1 Alpha/beta-Hydrolases Alpha/beta-Hydrolases 50 

5 c.37.1 P-loop containing nucleoside triphosphate hydrolases P-loop containing nucleoside triphosphate hydrolases 48 

6 c.1.10 Aldolase TIM beta/alpha-barrel 46 

7 c.14.1 ClpP/crotonase ClpP/crotonase 44 

8 c.79.1 Tryptophan synthase beta subunit-like PLP-

dependent enzymes  

Tryptophan synthase beta subunit-like PLP-

dependent enzymes 

42 

9 b.81.1 Trimeric LpxA-like enzymes Single-stranded left-handed beta-helix 42 

10 c.1.12 Phosphoenolpyruvate/pyruvate domain TIM beta/alpha-barrel 39 

a The descriptions of fold and superfamily are extracted from SCOP database. 
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