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Abstract Ralstonia solanacearum is a devastating bac-

terial pathogen that has an unusually wide host range.

R. solanacearum, together with Arabidopsis thaliana, has

become a model system for studying the molecular basis of

plant–pathogen interactions. Protein–protein interactions

(PPIs) play a critical role in the infection process, and some

PPIs can initiate a plant defense response. However,

experimental investigations have rarely addressed such

PPIs. Using two computational methods, the interolog and

the domain-based methods, we predicted 3,074 potential

PPIs between 119 R. solanacearum and 1,442 A. thaliana

proteins. Interestingly, we found that the potential patho-

gen-targeted proteins are more important in the A. thaliana

PPI network. To facilitate further studies, all predicted PPI

data were compiled into a database server called PPIRA

(http://protein.cau.edu.cn/ppira/). We hope that our work

will provide new insights for future research addressing the

pathogenesis of R. solanacearum.
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Introduction

Ralstonia solanacearum (previously named Pseudomonas

solanacearum) is a b-proteobacteria that causes severe

worldwide agricultural losses. This gram-negative bacte-

rium can infect plants through the roots. First, it enters the

xylem vessel where it grows and reproduces rapidly,

leading to wilting disease that causes the host to die. Then,

it goes back into the soil and returns to a saprophytic

organism. Susceptible crops generally cannot be farmed on

infected land for a long period of time (Hayward 1991).

R. solanacearum has an extraordinarily wide range of hosts,

including solanaceae family plants, leguminous plants and

some mono-cotyledonous plants. In total, more than 200

species, which cover at least 20 botanical families, are

potential hosts. Molecular analysis has revealed that

R. solanacearum can be divided into five races based on

whether the hosts originated from Asia, America or Africa.

Unfortunately, effective control is not available for this

devastating pathogen (Stéphane and Christian 2002).

Many genes of the R. solanacearum bacterium that are

responsible for its pathogenesis have been identified after

decades of careful work. The genome sequence of R. so-

lanacearum was released in 2002 (Salanoubat et al. 2002),

allowing us to investigate the mechanism of its pathoge-

nicity at the whole genome scale. This bacterium and one

of its hosts (Arabidopsis thaliana) have become a model

system for studying plant–bacteria interactions because of

the genetic and molecular tractability of both the pathogen

and the host (Salanoubat et al. 2002). However, the
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infection process used by R. solanacearum has not been

clarified.

Approximately 3,000 proteins in A. thaliana are directly

related to plant defense (Bishop et al. 2000). Many of these

proteins interact directly with the pathogen proteins, and

some of them can initiate plant defense responses to the

infection. Understanding the protein–protein interaction

(PPI) network (i.e., interactome) between plant proteins

and pathogen proteins is a critical step for studying the

molecular basis of pathogenesis (Pinzon et al. 2011; He

et al. 2008; Kim et al. 2008). However, it is still a chal-

lenging task to identify the plant proteins targeted by a

pathogen protein through existing experimental techniques

(Bogdanove 2002). Currently, only a few pairs of such

interactions have been identified, which is far from being

enough to systematically decipher the molecular mecha-

nism of pathogenicity.

In the past decade, a series of PPI prediction methods have

been elegantly developed, and they are playing an increas-

ingly important role in complementing experimental

approaches. Diverse data types or properties, such as gene

ontology (GO) annotations (Wu et al. 2006), protein sequence

similarity (Matthews et al. 2001), protein domain interactions

(Ng et al. 2003), and protein structural information (Ogmen

et al. 2005), have been frequently utilized to construct PPI

prediction methods. Two widely implemented methods are

probably the interolog and the domain-based methods

(Shoemaker and Panchenko 2007; Florez et al. 2010).

In this work, the PPIs between R. solanacearum and

A. thaliana were jointly predicted using the interolog and

the domain-based methods. The interolog method relies on

protein sequence similarity to conduct the PPI prediction.

Briefly, an R. solanacearum protein and an A. thaliana

protein can be predicted to interact with each other if an

experimentally verified interaction exists between their

respective homologous proteins in another organism. The

domain-based method uses domain interaction information,

which is derived from known protein 3D structures, to infer

the potential PPIs. If an R. solanacearum protein and an

A. thaliana protein contain an interacting domain pair, we

can expect the two proteins to also interact with each other.

We present the construction of a prediction pipeline and the

detailed results of our PPI prediction. In addition, we dis-

cuss how these predicted PPIs can help us to better the

understand plant–bacteria interactions.

Materials and methods

Datasets

A total of 5,113 R. solanacearum protein sequences were

downloaded from the National Center for Biotechnology

Information (NCBI) database (ftp://ftp.ncbi.nih.gov/genomes/

Bacteria/Ralstonia_solanacearum/). Overall, 28,064 A.

thaliana protein sequences were obtained from the TIGR

database (http://www.tigr.org/tdb/e2k1/ath1/).

To implement the interolog method, 56,191 experi-

mentally verified PPIs were obtained from the Database of

Interacting Proteins (DIP; http://dip.doe-mbi.ucla.edu/dip/

Main.cgi) (Salwinski et al. 2004). To perform the domain-

based PPI prediction, we downloaded the iPfam database

(version 23) (http://ipfam.sanger.ac.uk/) (Bateman et al.

2000), which contains 4,025 interacting Pfam domain

pairs.

For the interactome of A. thaliana, 4,660 experimentally

determined PPIs were downloaded from three public dat-

abases: The Arabidopsis Information Resource (TAIR)

(http://www.arabidopsis.org) (Swarbreck et al. 2008),

IntAct (http://www.ebi.ac.uk/intact/main.xhtml) (Kerrien

et al. 2007) and BioGrid (http://www.thebiogrid.org) (Stark

et al. 2006). The predicted A. thaliana PPI dataset was also

obtained from TAIR. To ensure that the predicted data are

generally reliable, those with a low confidence value (i.e.,

CV \ 2) were discarded.

The identification of secreted and membrane proteins

Membrane proteins in R. solanacearum were identified by

TMHMM (version 2.0) (Sonnhammer et al. 1998; Krogh

et al. 2001), which is considered one of the best trans-

membrane protein predictors (Moller et al. 2001). The

proteins were inferred to be transmembrane if the number

of predicted transmembrane helices was not \1, and the

expected number of amino acids in at least one trans-

membrane helix was not \18. SignalP (version 3.0)

(Bendtsen et al. 2004) was employed to identify secretory

proteins with the strictest criterion.

The prediction of PPIs between R. solanacearum

and A. thaliana

The potential PPIs between R. solanacearum and A. tha-

liana were predicted using the interolog method (Fig. 1).

Briefly, each protein in R. solanacearum or A. thaliana was

first BLASTed against all the proteins in the DIP database

to identify homologs with E-value, sequence identity and

aligned sequence length coverage cut-offs of 0.001, 30

and 80%, respectively. For each protein pair between

R. solanacearum and A. thaliana, an interaction can be

predicted if their corresponding homologs in DIP have at

least one interaction.

The potential PPIs between R. solanacearum and

A. thaliana were also predicted using the domain-based

method (Fig. 1). The Pfam domain information for

A. thaliana proteins were obtained from TAIR, whereas
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R. solanacearum proteins were directly submitted to the

Pfam server (Bateman et al. 2000) to identify the domains

with E-value and aligned sequence length coverage cut-

offs of 0.001 and 90%, respectively. If a protein pair

between R. solanacearum and A. thaliana contains an

interacting Pfam domain pair, the protein pair is expected

to interact with each other.

The predicted PPIs based on the interolog and the

domain-based methods were merged into a PPI network

between R. solanacearum and A. thaliana. Furthermore,

those PPIs with R. solanacearum proteins predicted to be

non-membrane or non-secreted ones were removed from

the established PPI network.

Analysis of GO enrichment

GO annotations of 96% of the A. thaliana gene products

were obtained from the GO website (http://www.

geneontology.org/). GO annotations of the R. solanacea-

rum genome were obtained from B2G-FAR (http://bioinfo.

cipf.es/b2gfar/home) (Gotz et al. 2008). About 80% of the

gene products of R. solanacearum were annotated.

According to the GO hierarchy, we looked up parent terms

with an ‘‘is_a’’ relationship of each GO term to find GO

terms at different hierarchies for a gene product. For each

group of gene products, we calculated the proportion of

each GO term at the sixth level of the GO hierarchy and did

a Fisher exact test to determine the p value followed by a

false discovery rate (FDR) correction (Storey 2002).

Clustering of the A. thaliana PPI network

The CFinder program (http://www.cfinder.org, v2.0.1)

(Adamcsek et al. 2006), which is based on the clique

percolation algorithm (Derenyi et al. 2005), was employed

to cluster the A. thaliana PPI network. k = 3 was used to

cluster the whole A. thaliana PPI network, whereas k = 4

was used to re-cluster the largest cluster generated at

k = 3. In each of the identified cluster, GO enrichment was

determined using the Fisher exact test followed by the FDR

correction. If many enriched GO terms existed in a cluster,

only the most significantly enriched GO term was assigned.

Network topology analysis

Two topological parameters (i.e., degree and betweenness)

for each protein in the A. thaliana PPI network were

computed using NetworkAnalyzer (Assenov et al. 2008). In

a PPI network, each protein is represented as a node. The

degree of a node is simply defined as the number of

interactions that a node has. The betweenness is a centrality

measure of a node in a network. The betweenness cen-

trality of a node n can be computed as follows:

Cb nð Þ ¼
X

s6¼n 6¼t

rst nð Þ=rstð Þ

where s and t are nodes in the network that are different

from n, rst denotes the number of shortest paths from s to t,

and rst (n) is the number of shortest paths from s to t that

pass through the node n.

domains sequences
DIP database

Identify potential PPIs

PPIRA

iPfam database

Detect protein homologs
using BLAST

Remove PPIs with R. solanacearum proteins annotated as
non-membrane or non-secreted ones
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Fig. 1 The prediction pipeline

of the potential PPIs between

R. solanacearum and

A. thaliana
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Results and discussion

The predicted PPIs between R. solanacearum

and A. thaliana

We predicted a total of 3,074 possible interactions between

119 R. solanacearum and 1,442 A. thaliana proteins, which

were compiled into a PPI network called PPIRA. Of the

predicted PPIs, 1,438 and 1,648 interactions were predicted

by the interolog and the domain-based methods, respec-

tively, whereas 12 interactions were consistently predicted

by both the methods. On average, an R. solanacearum

protein has around 26 A. thaliana interacting partners,

while an A. thaliana protein interacts with only approxi-

mately two pathogen proteins (Fig. 2). The ratio of proteins

involved in the predicted PPI network between R. solana-

cearum and A. thaliana is generally in line with a previous

computational work that addressed the interactome

between another plant pathogen, Xanthomonas oryzae, and

rice (Kim et al. 2008). As reported by Kim et al. (2008), the

plant pathogen Xanthomonas oryzae expresses a few pro-

teins to attack its host’s proteome. It has been established

that a pathogen mutates its genes extensively to infect a

host, whereas a plant defends the attacks by expanding its

gene families (Stahl and Bishop 2000). Therefore, to some

extent, the ratio of proteins involved in the predicted PPI

network may reflect the plant–pathogen arms race at the

molecular level.

Our predicted PPI data can be a valuable resource for

the community to further study the pathogenesis of bacte-

ria, which can be exemplified by the R. solanacearum

protein, Pme (NP_521699). As a bacterial virulence pro-

tein, Pme is a pectinesterase, which can catalyze the

hydrolysis of the thioester bond in palmitoyl-CoA. It par-

ticipates in cell wall metabolism by catalyzing pectin

degradation. Pme may lead to the maceration and cell death

of plant tissue, but the detailed infection process is poorly

understood (Spok et al. 1991). In the established PPI net-

work (i.e., PPIRA), Pme was predicted to interact with two

A. thaliana bifunctional dihydrofolate reductase-thymi-

dylate synthases (AT2G16370 and AT4G34570), which are

involved in dTMP biosynthesis. Within the context of the

established PPI network, this finding provides new clues to

further investigate the Pme-related infection process

between R. solanacearum and A. thaliana.

Biological functions of R. solanacearum

and A. thaliana proteins in the established PPI network

To determine if there is a certain biological function bias

between the R. solanacearum and A. thaliana proteins in

the established PPI network, we investigated the functional

compositions of the corresponding proteins via the analysis

of GO enrichment. The over-represented biological func-

tions are different in the two species. The R. solanacearum

proteins in the predicted PPIs are mainly enriched in

Fig. 2 Graphical

representation of PPIs between

R. solanacearum and

A. thaliana. Each node

represents a protein and each

edge denotes an interaction.

Red and blue nodes are

R. solanacearum and

A. thaliana proteins,

respectively. Green nodes are

R. solanacearum proteins that

are encoded by known or

candidate genes responsible for

pathogenesis (Salanoubat et al.

2002) (color figure online)
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transportation proteins (Supplemental File 1). In compari-

son, the A. thaliana proteins predicted to be targeted by the

pathogen have diverse functional propensities (Supple-

mental File 1). Plants evolve various self-protective

mechanisms after billions of years of battling against their

environment. Whether a plant can survive a war with a

pathogen depends on its self-protective systems (Stahl and

Bishop 2000). Therefore, proteins with functions that

respond to environmental stimuli are enriched in the

A. thaliana proteins. In addition, the potential pathogen-

targeted A. thaliana proteins are enriched in signal transduc-

tion, regulation and transportation proteins (Supplemental

File 1). Such differing functional enrichments between the

A. thaliana and R. solanacearum proteins indicate the dif-

ferent evolutionary traits between plants and pathogens (Stahl

and Bishop 2000).

R. solanacearum proteins tend to interact

with A. thaliana proteins that are more

important in the A. thaliana PPI network

In a PPI network, a densely connected area is referred to as a

cluster, and generally the cluster itself is a functional

module. Members of a cluster are usually involved in

similar biological processes, and protein complexes can be

identified through the clustering of a network (Palla et al.

2005; Jonsson et al. 2006). To investigate the functional

modules in which the potential pathogen-targeted A. thali-

ana proteins are involved, we first collected a total of 4,660

experimentally determined A. thaliana PPIs from three

public databases. Of the 2,292 proteins in the A. thaliana

PPI network, 265 proteins were predicted to interact with R.

solanacearum. The CFinder software was then employed to

cluster the A. thaliana PPI network (Adamcsek et al. 2006).

In CFinder, a network can be divided into different k-clique

clusters. Generally, a larger value of k corresponds to the

generation of denser clusters. A total of 83 clusters were

generated at k = 3, of which 22 contained at least one

pathogen-targeted protein. These 22 clusters are referred to

as pathogen-targeted clusters in this study.

From a network viewpoint, cellular processes attacked

by the pathogen might be revealed from these pathogen-

targeted clusters. According to the GO enrichment analy-

sis, we found that biological functions such as regulation of

the cell cycle (p = 3.30 9 10-28), channel activity (p =

5.07 9 10-10) and regulation of cellular metabolic pro-

cesses (p = 8.89 9 10-16) are over-represented in these 22

clusters (Fig. 3a and Supplemental File 2).

There are 52 potential pathogen-targeted proteins in these

22 clusters. Three of them exist in more than one cluster, and

these can be considered as the bottleneck of the network and

may be involved in the multiple cellular processes. These

kinds of proteins usually play vital roles because they likely

connect adjacent cellular processes (Yu et al. 2007). For

example, CDKA1 was predicted to be targeted by the path-

ogen proteins. It connects two clusters (#12 and #17 in

Fig. 3a) in the A. thaliana PPI network. These two clusters

are related to biopolymer catabolic processes and the regu-

lation of cell cycles. CDKA1 has previously been identified

to function in cell morphogenesis as well as in the cell pro-

liferation, which controls both G1/S and G2/M (mitosis)

phase transitions in the cell cycle (Iwakawa et al. 2006).

CDKA1 has also been reported to be induced by nematode

infection of roots (Niebel et al. 1996). Therefore, the path-

ogen interacting partners of CDKA1 predicted from our

work may be a good starting point to further study the role of

this A. thaliana protein during the bacterial infection.

Some of the 52 proteins play important roles in the

identified network clusters. Here, we take the largest

cluster (#9 in Fig. 3a), which contains 148 proteins, as an

illustrative example. Cluster #9 can be divided into seven

subclusters (Fig. 3b). Most of the proteins that appear in

more than one subcluster are calmodulins (CAMs) and

calcium-dependent protein kinases (CDPKs), both of

which are important in plant innate immune responses (Du

et al. 2009; Boudsocq et al. 2010). Interestingly, they are

also potential interacting partners of the pathogen proteins.

Therefore, potential pathogen-targeted proteins tend to be

bottlenecks between the seven subclusters.

The network topological features of the potential path-

ogen-targeted proteins in the A. thaliana interactome can

also reflect their biological roles. The A. thaliana PPI

dataset used in the aforementioned analysis is based only

on experimentally determined PPIs and covers just a small

part of the full A. thaliana interactome (Cui et al. 2008). To

better understand the topology of potential pathogen-tar-

geted proteins in a more comprehensive A. thaliana inter-

actome, the predicted PPI data obtained from TAIR were

also taken into account. Thus, the newly compiled A.

thaliana PPI network contained 5,240 proteins and 18,196

interactions, and 596 proteins were predicted to interact

with the pathogen R. solanacearum. In general, these

potential pathogen-targeted proteins have a higher degree

as well as a larger betweenness than other proteins in the

network (Wilcoxon rank-sum test, p = 0.0069 and

5.1 9 10-5). Furthermore, we also observed that the

potential pathogen-targeted A. thaliana proteins preferred

to exist in large clusters at different clustering cut-offs

(Wilcoxon rank-sum tests, p \ 0.05; Fig. 4).

It has been established that human cancer proteins tend

to be the bottlenecks of the human PPI network. On

average, cancer proteins have more interacting partners

than non-cancer proteins, because they generally play roles

in more complex cellular processes (Jonsson and Bates

2006). In our analysis, the potential pathogen-targeted

A. thaliana proteins displayed a similar network topology

Prediction of PPIs between R. solanacearum and A. thaliana 2367
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as cancer proteins in the human interactome, indicating that

a successful infection involves the interaction between R.

solanacearum proteins and A. thaliana proteins that play

roles in complex biological processes.

The cut-off choice in the PPI prediction methods

Recently, the interolog and the domain-based methods

have been used in predicting inter-species PPIs [e.g. the

PPI prediction between Xanthomonas oryzae and rice (Kim

et al. 2008)]. In our work, we employed these two methods

using the similar thresholds as Kim et al. (2008) to predict

the PPIs between R. solanacearum and A. thaliana. Com-

paratively, the interolog and the domain-based methods

have been more widely used in predicting intra-species

PPIs and the corresponding thresholds have been clearly

benchmarked. For instance, Yu et al. (2004) studied the

transferability of a PPI between genomes using the
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Fig. 3 The identified

A. thaliana PPI clusters that may

be targeted by R. solanacearum
proteins. Proteins that may

interact with R. solanacearum are

shown as triangles. a Nine

representative clusters (k = 3).

The GO enrichment of each

cluster is also listed. Due to space

constraints, the other 13

A. thaliana protein clusters that

may also be targeted by

R. solanacearum are not shown.

See Supplemental File 2 for

detailed information for all 22

protein clusters. b Re-clustering

(k = 4) of the largest cluster

generated at k = 3 (i.e., cluster #9

in Fig. 3a). The identified

subclusters are highlighted in

different colors. Most of the

proteins that may have an

interaction with R. solanacearum
are shared by different

subclusters, indicating they are

the bottlenecks in the cluster #9
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interolog method. They reported that PPIs can be trans-

ferred when a pair of proteins has sequence identity[80%

or E-value \10-70. Although the thresholds in predicting

intra-species PPIs should be different from those of inter-

species PPI prediction, we realized the thresholds of the

interolog method used in our work (0.001 BLAST E-value,

30% sequence identity and 80% aligned sequence length

coverage) seem quite low. Furthermore, the domain-based

method should be regarded as a special case of the inte-

rolog method, which focuses on the scale of domains.

Therefore, the cut-offs of the domain-based method used in

our work (i.e. 0.001 Pfam E-value and 90% aligned

sequence length coverage) also seem too low. Due to

the lack of experimentally determined PPIs between

R. solanacearum and A. thaliana, we are not able to

quantitatively estimate the reliability of the predicted PPIs

based on the current thresholds. On the one hand, such low

thresholds result in a relatively large PPI network, which

provides sufficient data for network analysis. On the other

hand, such thresholds also lead to a high false positive rate

in the predicted PPIs.

To quantify the sizes of predicted PPIs based on dif-

ferent thresholds, we repeated the prediction using more

stringent thresholds. Compared with the interolog method,

the domain-based method generally shows lower accuracy

(Rhodes et al. 2005). Therefore, we only investigated the

interolog method’s performance using a series of E-value

and sequence identity. As expected, the number of pre-

dicted PPIs was dramatically decreased with more stringent

thresholds used (Fig. 5). For instance, no PPI could be

predicted when the sequence identity cut-off was set to

65% and only 170 PPIs, which covered 14 R. solanacea-

rum proteins and 124 A. thaliana proteins, could be pre-

dicted when the E-value cut-off was assigned as 10-70

(Fig. 5). Interestingly, we still found that the clusters

containing proteins that are predicted to interact with

R. solanacearum proteins are always significantly larger

than other clusters in A. thaliana PPI network, although the

number of predicted PPIs is highly affected by choosing

more stringent thresholds (Fig. 5). This suggests that the

current prediction based on low thresholds is still helpful

to explore some global characteristics of PPIs between

R. solanacearum and A. thaliana.

Database server

We have made the predicted PPI data freely accessible at

http://protein.cau.edu.cn/ppira. Users can query an R. so-

lanacearum or an A. thaliana protein using different types

of gene names. Potential interacting partners of the query

protein in the opposite organism will be returned. To

provide users with information about the biological func-

tion of the interacting partners and how they were pre-

dicted, essential prediction parameters are included such as

E-value, sequence identity and aligned sequence length

coverage. In addition, GO annotations of each potential

interacting partner are listed. Due to the low thresholds

used in the two PPI prediction methods, users may further

estimate the reliability of a predicted PPI by checking the

accompanied prediction parameters.

Conclusions

Using two well-known PPI prediction methods, we iden-

tified 3,074 potential PPIs between R. solanacearum and its

plant host, A. thaliana. Due to internal limitations of the

computational methods, the predicted data may still suffer

from two drawbacks. First, the predicted PPI network is

still far from complete. Second, the predicted data may

inevitably contain a lot of false positives. To quantitatively

assess the reliability of the predicted PPIs, experimentally

determined PPI data are required. Even so, the predicted

PPI data have allowed us to catch a glimpse of the overall

picture of the PPI network between R. solanacearum and

A. thaliana. We hope that the current work can shed light

Fig. 4 Distribution of cluster sizes in the A. thaliana PPI network.

The horizontal axis of this box plot denotes the k-value, and the

vertical axis shows the cluster size (i.e., the sum of proteins in a

cluster). For each k-value, clusters containing proteins that may

interact with R. solanacearum are shown on the left, while the other

clusters are plotted on the right. According to Wilcoxon rank-sum

tests, the difference between these two kinds of clusters is significant

(p \ 0.005 for k = 3 and 4, and p \ 0.05 for k = 5, 6 and 7). In each

box, the center band is the median, while the top and bottom lines are

the upper and lower quartiles, respectively. The ends of the whiskers

are within a 1.5 inter-quartile range (IQR, which is equal to the

difference between the upper quartile and the lower quartile). All

outliers beyond the whiskers are shown as circles
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for further research into the molecular pathogenesis of R.

solanacearum. For instance, the predicted data may inspire

a path to the discovery of new anti-bacterial drug targets.
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