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Abstract: The identification of catalytic residues of an enzyme is one of the most important steps towards understanding 
its biological roles and exploring its applications. Thus far, a range of catalytic residue prediction methods have been de-
veloped, which play an increasingly important role in complementing the experimental characterization of enzymatic 
functions. The available approaches can be split into two broad categories: i) similarity-based catalytic residue anno-
tation and ii) de novo catalytic residue prediction. In this article, we review the existing research strategies, recently de-
veloped bioinformatics tools, and future perspectives in the topic of de novo catalytic residue prediction. In particular, we 
review the various residue properties that have been used to distinguish catalytic and non-catalytic residues. We also de-
tail how these residue properties can be combined into a prediction system with the assistance of different statistical or 
machine learning methods. Since in many respects de novo prediction of catalytic residues is still in its infancy, in this re-
view we also propose some hints that are likely to result in novel prediction methods or increased performance. 
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1. INTRODUCTION 

 Providing functional annotation for vast amounts of pro-
tein sequence and structural data generated by high-
throughput technologies is one of the major tasks in the post-
genomic era [1-4]. Experimental determination of protein 
function is challenging, and performing assays to determine 
the function of all uncharacterized proteins is impossible. 
Thus, computational tools can play important roles in such a 
demanding task. 
 Enzymes are key proteins that are in charge of diverse 
biochemical functions and catalyze the chemical reactions 
related to the metabolism of all living organisms [5, 6]. Rep-
resenting a significant fraction of a proteome, enzymes have 
long been categorized according to the Enzyme Commission 
(EC) system, a hierarchical classification that assigns unique 
four-number codes to different enzymatic reactions. The first 
number represents the general class of catalyzed reaction: i) 
oxidoreductases, ii) transferases, iii) hydrolases, iv) lyases, 
v) isomerases, and vi) ligases. The second and third number 
(i.e., sub-class and sub-subclass) further defines the cata-
lyzed reaction, and the final number defines the substrate 
specificity. Prediction of the EC number for a query enzyme 
is a basic step towards understanding the enzymatic function 
and many efforts have been directed toward this prediction 
task in the past decade [6-8]. The identification of catalytic 
residues within a query enzyme is a further important step 
towards understanding the biological roles and applications 
of that enzyme, particularly since only a small number of 
residues within an enzyme molecule directly participate in 
catalysis, and the spatial arrangement as well as phy-
sicochemical properties of these residues (i.e., catalytic 
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residues) determine the chemical reaction catalyzed by the 
enzyme. The identified catalytic residues can provide useful 
information regarding the catalytic mechanism of enzymes, 
the construction of metabolic pathways, and enzyme-targeted 
drug discovery [9-11].  
 Catalytic residue prediction can be classified into se-
quence- and structure-based methods. The sequence-based 
method allows for prediction of the catalytic residues of the 
enzyme directly from the primary sequence. Provided that 
the predicted or experimentally determined 3D structure of a 
query enzyme is available, the structure-based method is 
used to predict catalytic residues based on its primary se-
quence as well as its 3D structure. The application of the 
structure-based method is somehow limited, since only a 
small fraction of proteins have known structures. In the past 
several years, structural genomics projects have provided a 
sharp increase in the number of structures of functionally 
unknown proteins. Therefore, algorithms capable of predict-
ing catalytic residues within a structure are becoming in-
creasingly useful. Moreover, elucidation of how protein 
structural information can be used to predict catalytic resi-
dues is also of theoretical interest. 
 In addition to the prediction of catalytic residues, efforts 
have also been focused on predicting active sites of enzymes. 
Generally, the active site of an enzyme consists of the corre-
sponding catalytic residues and structurally neighboring 
residues. In some cases the active site can be defined as a 
sphere, in which the corresponding catalytic residues are 
centered (Fig. 1). For an enzyme structure, a correct active 
site prediction means that the overlap between a predicted 
active site and the corresponding known site is above a cer-
tain threshold (e.g., 50%)[3]. Comparatively, the prediction 
of an active site is less challenging than that of catalytic resi-
dues. In this article, we focus on reviewing the prediction of 
catalytic residues. As a broader topic, protein functional site 
(residue) prediction tools have been widely reported in the 
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literature. These tools may also be used to predict catalytic 
residues, since catalytic residues belong to an important type 
of functional residues. However, because the prediction of 
catalytic residues is not a major task of these functional site 
prediction tools, review of these tools is not included in this 
article. 
 Sequence and structural similarity-based methods are two 
classical bioinformatics strategies that are widely used to 
identify catalytic residues in a query enzyme. The sequence 
similarity-based method requires the identification of ho-
mologous enzyme sequences with known catalytic residues. 
Based on the sequence alignment of the query enzyme and 
an identified homolog, catalytic residues in the query se-

quence can be inferred from the identified homolog. Relying 
mainly on this approach, Mistry et al. (2008) performed 
catalytic residue annotation in the whole Pfam database [12]. 
If no homolog is available, the query sequence can be further 
searched against sequence motif databases (e.g., ProSite 
[13]). Once the query sequence contains some active site-
related motifs, the corresponding catalytic residues in the 
query sequence may also be inferred. Although the above 
sequence similarity searching- or sequence motif matching-
based annotations are relatively straightforward, such meth-
ods can result in false positive predictions in some cases, due 
to the fact that enzyme functions are less conserved [14-16].  
 When the 3D structure for the query enzyme is available, 
the structural similarity-based method is also able to identify 
catalytic residues, even when the sequence similarity-based 
method is not executable [17]. The potential catalytic resi-
dues in the query enzyme can be predicted through mapping 
catalytic residues of a structural homolog into the query en-
zyme. Generally, such structural similarity-based method can 
offer in-depth insight by highlighting 3D structural arrange-
ments of catalytic residues. However, the power of structural 
similarity-based annotation is often weakened by the fact 
that a similar structure does not necessarily imply a similar 
function [18]. Furthermore, proteins without detectable se-
quence or structural similarity may have the similar spatial 
arrangements of active sites for catalyzing similar reactions 
(i.e., convergent evolution) [19-21]. Complementary to 
structural similarity-based methods, therefore, several meth-
ods focusing on the local pattern of active sites (i.e., the ac-
tive site structure motifs) and recognizing catalytic residues 
by searching query structure against active site templates of 
known enzymes have also been developed [21-23].  
 The above two classical strategies are further illustrated 
in Fig. (2). Due to the fact that the known enzyme active site 
sequence (structure) motifs are limited, the motif matching 
based methods are comparatively less useful. For practical 
use, a combination of these methods is strongly suggested to 

Fig. (1). Catalytic residues and active site in an enzyme structure 
(beta-ketoacyl-acyl carrier protein synthase II, PDB entry: 1kas). 
Three catalytic residues (His303, His340, and Phe400) are shown 
as sticks, while the active site is shown as a sphere. 

Fig. (2). Flowchart of the classical catalytic residue detection methods. The active site sequence (structure) motif matching based methods
(broken arrows) are comparatively less powerful than the sequence (structural) similarity searching based methods (solid arrows), since the 
known enzyme active site sequence (structure) motifs are still limited. 
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obtain a comprehensive understanding of the catalytic resi-
dues of a query enzyme. However, all the aforementioned 
methods may fail to predict catalytic residues for a query 
enzyme. Therefore, the development of de novo prediction 
methods (i.e., strategies independent of sequence alignment, 
sequence motif matching, structure comparison, or active 
site matching) is extremely important. 
 With the accumulated enzyme structures deposited in the 
PDB database [24], sequence and structural characteristics of 
catalytic residues have been extensively investigated [11, 25-
32]. Meanwhile, de novo prediction methods have also been 
developed to identify catalytic residues in enzyme sequences 
and structures. Fig. (3) shows an overall flowchart for the 
development of a de novo prediction method. With the ad-
vantage of incorporating different sequence or structural 
properties into a predictor, statistical methods and machine 
learning algorithms, such as Artificial Neural Network 
(ANN) and Support Vector Machine (SVM), have also been 
used for the de novo prediction of catalytic residues in en-
zymes [3, 33-35]. Compared with other prediction tasks in 
the field of protein bioinformatics, the de novo prediction of 
catalytic residues is emerging as a hot topic and the pub-
lished prediction algorithms have flourished in the past few 
years. 
 In this article, we review the existing research strategies, 
recently developed bioinformatics tools, and future perspec-
tives concerning de novo catalytic residue prediction. In par-
ticular, the residue properties that have been reported for 
distinguishing catalytic and non-catalytic residues are inten-
sively reviewed. We also detail how these residue properties 
can be combined into a prediction system with the assistance 
of statistical or machine learning methods. Since de novo
prediction of catalytic residues may still be considered a rela-
tively nascent methodology, novel and more effective meth-

ods are likely to appear in the very near future. Throughout 
this review, we will indicate those techniques that are likely 
to result in the development of novel tools or increased per-
formance. 

2. METHOD DEVELOPMENT OF DE NOVO CATA-
LYTIC RESIDUE PREDICTION 

2.1. Enzyme Databases 

 A breadth of information regarding enzymes, including 
sequences, structures, functions, catalytic residues, kinetics, 
binding affinity, enzyme reaction mechanisms, and meta-
bolic pathways, has been continuously accumulated in the 
primary literature and compiled into different enzyme spe-
cific databases (e.g., IntEnz [36], CSA [10], BRENDA [37], 
EzCatDB [38], SFLD [39], and MACiE [40]). CSA 
(http://www.ebi.ac.uk/thornton-srv/databases/CSA/), which 
stands for the Catalytic Site Atlas, is a database that docu-
ments enzyme active sites and catalytic residues in enzymes 
with known 3D structure. The current CSA (version 2.2.10) 
contains 23,265 entries based on 968 literature entries. Fol-
lowing the rules established by Bartlett et al. (2002) [11], 
assignment of a catalytic residue in CSA includes: i) direct 
involvement in the catalytic mechanism; ii) effects exerted 
on residues or water molecules directly involved in catalysis; 
iii) stabilization a transient intermediate; and iv) the interac-
tion with a substrate or cofactor that helps catalysis. To de-
velop de novo catalytic residue predictors, the literature en-
tries in CSA have been widely used and the definition of a 
catalytic residue in CSA is often regarded as the “gold stan-
dard”. To facilitate training and testing of a prediction 
method, the sequences of CSA enzymes are often filtered to 
remove redundant structures. The annotated catalytic sites 
for each CSA enzyme serve as positive controls (i.e., cata-
lytic residues), while all other residues are regarded as nega-

Fig. (3). Workflow of developing a de novo catalytic residue predictor. 
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tives (i.e., non-catalytic residues). It should be emphasized 
that there are much more non-catalytic than catalytic resi-
dues in enzyme sequences. A prediction model based on the 
original ratio of catalytic and non-catalytic residues in CSA 
enzymes would inevitably result in a strong bias toward pre-
diction of all residues as non-catalytic [3, 41]. To avoid such 
bias, the ratio of catalytic to non-catalytic residues is opti-
mally selected to create the training dataset and the original 
ratio is kept for the testing dataset. 

2.2. Different Residue Properties Used in Developing de 
Novo Predictors 

 To construct a de novo catalytic residue predictor, residue 
properties that can be used to distinguish catalytic and non-
catalytic residues must be explored and converted into fea-
ture vectors (also known as encodings or descriptors). Resi-
due properties reviewed herein cover residue type, sequence 
conservation, network centrality, relative position, hydrogen 
bonding, solvent accessibility, flexibility, secondary struc-
ture information, electrostatic property, and structural stabil-
ity score. Rather than quantitatively evaluating the perform-
ance of these residue properties for distinguishing catalytic 
and non-catalytic residues, we instead emphasize discussion 
of the physicochemical implications of these residue proper-
ties and review some necessary bioinformatics tools to ob-
tain the corresponding encodings. It is also worth mentioning 
that some residue properties are directly inferred from pro-
tein sequences, while the calculation of some other residue 
properties requires the information of protein 3D structures. 
More details on these encodings are described herein. 
2.2.1. Residue Type 

 Different amino acids have different propensities to be 
catalytic residues [11]. For catalytic residues, approximately 
65% are charged residues (H, R, K, E, D), 27% of catalytic 
residues are polar residues (Q, T, S, N, C, Y, W), and 8% are 
composed of hydrophobic residues (G, F, L, M, A, I, P, V), 
as reported by Bartlett et al. [11]. Two encodings were fre-
quently used to represent this property of different residue 
types. The first encoding is the standard binary encoding, 
which entails each of the 20 amino acids encoded as a 20-
dimensional binary vector, e.g., A (1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0), C (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0), …, 
and Y (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1). Considering 
that the 20 amino acids can be grouped into different types 
based on physicochemical properties, the second encoding 
was utilized. For instance, the implemented residue type en-
coding was based on a three-type classification of the 20 
amino acids, in which charged, polar, and hydrophobic resi-
dues were encoded as (0 0), (0 1), and (1 0), respectively, as 
reported by Petrova and Wu [33]. 
2.2.2. Sequence Conservation 

 One of the most important characteristics of catalytic 
residues is the high degree of conservation [10, 11]. There-
fore, the sequence conservation-related encoding is the most 
important component in the current de novo catalytic residue 
predictors. To compute the conservation score for a residue, 
an iterated PSI-BLAST searching [42] for the corresponding 
sequence was performed against the NCBI non-redundant 
protein sequence database to obtain a multiple sequence 
alignment (MSA). The MSA was then used to infer the con-

servation score for each residue within a sequence. Thus far, 
a series of conservation scoring methods have been devel-
oped, such as Shannon entropy, von Neumann entropy, and 
relative entropy. Please refer to Valdar (2002) [43] for a 
more complete discussion of these scoring schemes and the 
evolution of these methods. To score residue conservation, 
some well-maintained servers are available to the commu-
nity. For example, the Scorecons server (http://www.ebi.-
ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.-
pl)  is widely used. These diverse conservation scoring 
methods may yield different performances. In 2008, Capra 
and Singh [44] evaluated different conservation scoring 
methods and determined that the Jensen-Shannon diver-
gence-based score is the most informative for detection of 
the catalytic residues. 
 In addition to sequence conservation, information regard-
ing evolutionary conservation was also introduced through 
phylogenetic analysis. Wang et al. (2008) proposed a novel 
score, called the state to step ratio score (SSR), for measur-
ing evolutionary conservation [45]. The maximum parsi-
mony tree can be constructed based on a given MSA. Then, 
the variation patterns from the root of the tree (theoretical 
ancestral sequence) to the leaf of the tree (sequences in 
MSA) are used to create a score (i.e., SSR) for each residue. 
The SSR score has been established as a simple, yet effective 
evaluation for measuring evolutionary conservation and has 
been demonstrated as a useful descriptor for distinguishing 
catalytic and non-catalytic residues. It should be mentioned 
that some query proteins may fail to find sufficiently diverse 
homologues. In this case, the power of the above sequence 
conservation or evolutionary conservation is relatively lim-
ited.  

2.2.3. Network Centrality 

 Each protein structure can be transformed into a network 
(i.e., an undirected residue interaction graph (RIG)), with 
residues modeled as vertices and residue interactions as 
edges [46]. A series of network topology parameters were 
explored within the established network. In the past several 
years, investigations utilizing the RIGs of enzyme structures 
have demonstrated that residues within or directly contacting 
active site usually have more interactions with other resi-
dues, and the centrality values of catalytic residues in the 
network are typically high, especially the closeness centrality 
[26, 27, 30]. As the most informative network topology pa-
rameter, the closeness centrality has thus been employed to 
distinguish catalytic and non-catalytic residues [35].  
 The application of RIG has also been explored in other 
topics. Based on the RIGs, Li et al. reported a simple method 
to detect the folding nucleus in a protein structure [47]. Re-
cently, David-Eden and Mandel-Gutfreund [48] performed 
such network analysis on ribosomal structures, elucidating 
that the major functional sites of the ribosome exhibit sig-
nificantly high centrality measures. In the above calculation, 
no weight was assigned for any edge within the network 
graph, i.e., the strength of each interaction is disregarded in 
this network. Blundell and co-workers (2008) also used a 
similar network analysis to predict the structural effects 
caused by non-synonymous single nucleotide polymor-
phisms (nsSNPs) [49]. Furthermore, the network analysis 
was extended to predict disease-associated nsSNPs with 
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high-quality performance, which may be ascribed to the in-
troduced weightings of edges. Likewise, suitable weighting 
schemes need to be considered to further explore the applica-
tion of RIG in catalytic residue prediction. 
2.2.4. Relative Position 

 Catalytic residues for almost all enzymes tend to reside in 
a large cleft on the molecular surface [11, 50, 51]. As ob-
served by Bartlett et al. (2002) [11] , this tendency is particu-
larly striking for the largest cleft, and is also significant for 
the second and third largest clefts. The difference is not sig-
nificant for clefts that are smaller than the third largest [11]. 
As a representation of the relative position of a given residue 
within a protein structure, the cleft related encoding was thus 
employed in several prediction methods [3, 33, 35]. All 
clefts for a given structure can be detected through the use of 
computational programs (e.g., SURFNET [52] and CASTp 
[53]), and then the cleft encoding for each residue can be 
assigned. For instance, (1 0 0 0) denotes those residues in the 
largest cleft, (0 1 0 0) represents the second or third largest 
cleft, (0 0 1 0) indicates the fourth to ninth largest cleft, and 
(0 0 0 1) corresponds to none of the above clefts, as de-
scribed by Gutteridge et al. (2003) [3]. Based on a similar 
strategy, some other cleft encoding variants were also pro-
posed by Petrova and Wu [33]. In 2005, Ben-Shimon and 
Eisenstein found that catalytic residues are very often located 
among the 5% of residues closest to the centroids of enzyme 
molecules [29]. Moreover, this property of catalytic residues 
was implemented in a predictor called EnSite for locating the 
active sites of enzymes. In contrast to cleft encoding, the 
property proposed by Ben-Shimon and Eisenstein also re-
flects the relative position of residues and can be easily de-
rived from a query protein’s 3D structure, since searching 
and defining all the clefts on the enzyme molecular surface is 
not necessary. 
2.2.5. Hydrogen Bonds 

 Most catalytic residues act as donors or acceptors in at 
least one hydrogen bond [11]. Therefore, hydrogen bond 
related information could be incorporated into different cata-
lytic residue predictors [3, 33, 35]. Generally, the hydrogen 
bond information for a residue can be assigned from the 
query protein’s 3D structure, through using a range of well 
established software (e.g., HBPLUS [54]). In our previous 
work [35], the following three parameters were used to rep-
resent this property: i) the number of hydrogen bonds from a 
main-chain atom in a given residue to any other atom in a 
protein (NmHB); ii) the number of hydrogen bonds from a 
side-chain atom in a given residue to any other atom in a 
protein (NsHB); and iii) the total number of hydrogen bonds 
involving any atom in a given residue (tNHB). Compara-
tively, NsHB is the most informative among these hydrogen 
bond related encodings [33, 35]. 
2.2.6. Relative Solvent Accessibility 

 Catalytic residues are generally more exposed to solvent 
than other residues. For a query protein structure, the relative 
solvent accessibility (RSA) for each residue can be com-
puted via some software (e.g., NACCESS [55]), and then 
some RSA based encodings can be constructed. As reported 
in the literature [33, 35], five RSA based encodings were 
explored, including the RSA of all atoms (AaRSA), the RSA 

of all side chain atoms including alpha carbons (AsRSA), the 
RSA of non-polar side chain atoms (NpRSA), the RSA of all 
polar side chain atoms (ApRSA), and the RSA of all main 
chain atoms (McRSA). Comparatively, AsRSA was found to 
be the most informative encoding. 
2.2.7. Structural flexibility 

 Catalytic residues tend to be more rigid than average 
ones in an enzyme structure [11, 56]. As reported in the lit-
erature [3, 33, 35], the encodings based on the B-factors 
were frequently used to measure residue flexibility. One ca-
veat is that this encoding may only be suitable for those pro-
tein structures determined by X-ray crystallography. 
2.2.8. Secondary Structure 

 Catalytic residues are more inclined to locate in coil re-
gions [11]. Therefore, the secondary structure state (SSS) of 
a residue can be employed as a useful encoding in the predic-
tion of catalytic residues. For a sequence based prediction, 
the SSS of a residue can be predicted via secondary structure 
prediction methods (e.g., PSIPRED[57]); for a structural 
based prediction, the SSS can be assigned from the corre-
sponding protein structure through using secondary structure 
assignment methods (e.g., DSSPcont [58]). 
2.2.9. Computed Electrostatic Properties 

 Some complicated residue properties (e.g., computed 
electrostatic properties) were also explored to predict cata-
lytic residues. Ondrechen et al. reported a computational 
method, namely theoretical microscopic titration curves 
(THEMATICS), for the identification of active sites in pro-
tein structures [59]. To perform the calculation of THE-
MATICS, the Poisson-Boltzmann (P-B) equations must first 
be solved, and then the proton occupations of the ionizable 
residues are computed as functions of pH values. A small 
proportion of the ionizable residues in proteins were reported 
as perturbed, exhibiting non-Henderson-Hasselbalch (H-H) 
titration behavior [60]. Since the residues with perturbed 
titration behavior are more likely to appear in the active site 
of an enzyme [27, 59-62], THEMATICS is able to detect 
these perturbed residues and predict the location of the active 
site. Based on the computed electrostatic properties, Bate 
and Warwicker (2004) [28] also developed a method to iden-
tify a point near the active site using the peak of the electro-
static potential in the solvent space above the protein struc-
ture. 
2.2.10. Structural Stability Score 

 There is accumulated evidence that catalytic residues are 
conserved to maintain the enzymatic function at the cost of 
stability [51]. Mutations of active site residues usually result 
in increased stability. Therefore, the property reflecting the 
destabilizing effect of a residue could be employed to distin-
guish catalytic and non-catalytic residues, which have been 
implemented in several catalytic residue prediction methods 
[45, 51]. For instance, Wang et al. (2008) [45] used residue-
specific all atom probability discriminatory function 
(RAPDF) based scores to quantify the structural stability of a 
residue. Furthermore, these two RAPDF based scores were 
integrated into their catalytic residue prediction system 
called MFS [45]. Similar to the calculation of electrostatic 
properties, a relatively complicated calculation is required to 
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obtain such structural stability scores. To derive these two 
RAPDF based scores, each residue in a query protein struc-
ture was mutated into one of the 19 alternative amino acids, 
and the generated new structures were further refined for the 
optimization of topology and the maximization of stability 
[45]. Finally, the two RAPDF based scores were obtained 
from the set of 20 conformations via complex energy calcu-
lations. 
2.2.11. Other Residue Properties 

 In addition to the aforementioned encodings, other resi-
due properties have also been reported in the literature. For 
instance, Zhang et al. (2008) [41] used the average cumula-
tive hydrophobicity of a residue as a feature representation. 
Meanwhile, some frequently occurring catalytic residue pairs 
in known enzymes were used to construct a feature vector. 
As reported by Pugalenthi et al. (2008) [63], a series of 
physicochemical properties calculated from each residue and 
the corresponding spatial neighbors were also used as a type 
of feature encoding. A total of 264 atom-based structural 
properties were calculated using S-BLEST [64] and em-
ployed for an important protein structure based encoding. 
Notably, extraction of a novel and effective residue property 
is becoming more challenging. In fact, some newly devel-
oped descriptors frequently contain overlapped information 
with the previously reported residue properties. For instance, 
the physicochemical properties used by Pugalenthi et al. [63] 
overlap with the residue type encoding reviewed in section 
2.2.1 to some extent. 

2.3. Prediction Algorithms 

2.3.1. Prediction Algorithms Based on Some Individual 
Descriptors 

 As reviewed in the previous section, many residue prop-
erties have been explored to distinguish catalytic and non-
catalytic residues. Based on these descriptors, a series of de 
novo catalytic residue prediction algorithms were developed 
[3, 33-35, 41]. A few predictors rely heavily on some indi-
vidual descriptors. For instance, the network centrality and 
RSA properties have been combined to detect catalytic resi-
dues in protein structures [27, 30]. Developed by Ondrechen 
et al. (2001)[59], THEMATICS is merely based on the com-
puted electrostatic properties to predict catalytic residues in 
protein structures. Conceptually, such methods are most 
likely the best predictors, since the physicochemical mean-
ings of employed descriptors are easily interpreted. 
2.3.2. Prediction Algorithms Based on Simple Statistical 
Methods 

 To develop a predictor with improved performance, 
combination of different descriptors is necessary, which can 
be developed by employing statistical methods and state-of-
the-art machine learning methods. Simple statistical methods 
can yield an improved performance by efficiently integrating 
several largely independent descriptors in a simple model. 
For instance, Fischer et al. (2008) [65] used conditional 
probability density estimation to calculate the probability of 
each residue to be catalytic given its conservation, the profile 
amino acid frequencies, and the predicted secondary struc-
ture and RSA states. Thus, several descriptors were effec-
tively combined into a simple statistical frame [65]. Re-

cently, Wang et al. (2008) used a simple logistic regression 
model to integrate several descriptors into a predictor called 
MFS [45]. The employed descriptors in MFS include se-
quence conservation, evolutionary conservation, structure 
stability score, and residue type. As indicated by Wang et al.
(2008)[45], such simple statistical models are conceptually 
valuable with statistical parameters that are comprehensible. 
2.3.3. Prediction Algorithms Based on Machine Learning 
Approaches 

 An alternative way to integrate descriptors is through the 
use of sophisticated machine learning approaches. Two fre-
quently used machine learning methods are ANN and SVM. 
Based on the same dataset and descriptors, different machine 
learning methods can have distinctive performances. In gen-
eral, SVM appears to be more popular in the de novo predic-
tion of catalytic residues as well as for other bioinformatics 
prediction topics. Recently, some free available machine 
learning software packages (e.g., WEKA 
(http://www.cs.waikato.ac.nz/ml/weka/)) allowed developers 
to test different machine learning methods for a given pre-
diction task. One of the cornerstone methods for de novo 
prediction of catalytic residues was developed by Thornton 
and co-workers using ANN [3] . Petrova and Wu (2006) [33] 
evaluated 26 different algorithms in the WEKA software 
package, and reported that a SVM model trained on a set of 
seven out of 24 residue properties can result in an optimized 
performance for predicting catalytic residues. Furthermore, 
Youn et al. (2006) [34] tested SVM on 314 different fea-
tures, demonstrated that the combination of multiple features 
improves performance, and presented the most highly ranked 
features. Using SVM, Pugalenthi et al. (2008) [63] tested 
278 different features for catalytic site prediction and inves-
tigated the performance with a refined subset of features. As 
reported in our previous study [35], a genetic algorithm as-
sisted neural network (GANN) was employed to construct an 
improved catalytic residue predictor. The core idea of 
GANN is to use a genetic algorithm (GA) for optimization of 
the connection weights within neural networks [66]. Based 
on our dataset, GANN can result in a better performance 
than SVM [35]. Although machine learning methods can 
usually lead to improved performance, some of them are of-
ten criticized and labeled as “black box” methods, due to a 
lack of biological interpretation. The most prominent exam-
ple of “black box” methods is ANN, which is not an appro-
priate technique if the biological interpretation of the model 
is desired. 
 Although machine learning methods are able to combine 
many descriptors within one prediction system, a refined 
subset should be selected from all the descriptors under in-
vestigation. A refined subset can effectively avoid “the curse 
of dimensionality”, filter the overlapped information caused 
from different features, and result in an improved predictive 
accuracy. Furthermore, a refined descriptor subset can result 
in a prediction system that is more conceptually concise by 
highlighting the key descriptors. Based on a benchmarking 
dataset of 254 catalytic residues, As reported by Petrova and 
Wu (2006)[33], the wrapper subset selection algorithm was 
performed on a dataset of 254 catalytic residues and 254 
non-catalytic residues. Of the 24 attributes under investiga-
tion, seven attributes with a dimension of 26 were selected as 
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an optimal subset of residue properties. The feature selection 
tool, based on LIBSVM [67], was employed to select the 
optimized subset of properties in our previous study [35]. 
Based on a balanced dataset of 480 residues (i.e. 240 cata-
lytic residues and 240 non-catalytic residues), eight proper-
ties with a dimension of 30 contributed the optimal perform-
ance. In 2008, Zhang et al. used the 2-statistic algorithm to 
perform the feature selection [41]. The 2-value for each 
feature was computed on a dataset of 606 catalytic and 3636 
non-catalytic residues. Then, the initial 544 features were 
ranked according to the calculated 2-values. Finally, the top 
210 ranked features were optimally selected in training the 
prediction model [41]. To identify the prominent features 
that separate the positive and negative classes, the informa-
tion gain algorithm was employed in the prediction method 
of Pugalenthi et al. [63]. Based on a benchmarking dataset of 
1500 catalytic residues and 1500 non-catalytic residues, the 
selected 100 features out of the 278 features under investiga-
tion resulted in the best performance. The feature selection is 
often required to handle multidimensional feature vectors, 
and many methods have been developed and widely used to 
address different prediction tasks. In principle, the feature-
selection methods that have been used in other topics can 
also be introduced in the prediction of catalytic residues. 

2.4. Performance Assessment of Different Predictors 

2.4.1. Training and Cross-Validation 

 For statistical theory or machine learning approach based 
prediction algorithms, the dataset is generally divided into 
training dataset and testing datasets. The prediction model 
was inferred from the training dataset and cross-validated by 
the testing dataset. As previously reported, n-fold cross-
validation was frequently employed. The whole dataset was 
randomly divided into n subgroups of roughly equal size. In 
each evaluation step, one subgroup was selected for testing, 
while the other n-1 subgroups were used as the training 
dataset. Finally, the overall performance was averaged over 
the n-fold cross-validation experiments. To obtain prediction 
models that are suitable for real enzymes, a 1:6 ratio of cata-
lytic to non-catalytic residues was frequently assigned as the 
best ratio to train the corresponding prediction models [3, 34, 
35, 41].  
2.4.2. Performance Measures 

 As reported in the literature, four measurements, i.e., 
Accuracy (AC), True positive rate (TPR), False positive rate 
(FPR), and Matthews correlation coefficient (MCC), were 
frequently used to evaluate the prediction performance: 
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where TP, FP, FN, and TN denote true positives, false posi-
tives, false negatives, and true negatives. MCC should be 

more suitable for assessing the overall prediction accuracy, 
since the numbers of catalytic and non-catalytic residues are 
different in real enzymes. The value of MCC ranges from -1 
to 1, and a higher MCC indicates a better prediction per-
formance. In general, MCC = 1 conveys the best prediction, 
MCC = -1 indicates the worst prediction, and MCC = 0 
means a random prediction. In addition, similar parameters 
to the above four measures were also employed. For in-
stance, the parameter Precision (i.e., Preci-
sion=TP/(TP+FP)) was utilized by Zhang et al. (2008) [41]. 
 Prediction accuracy was also assessed through using the 
ROC analysis [68, 69]. For a prediction method, the curve of 
ROC plots true positive rate (i.e., Sensitivity) as a function of 
false positive rate (i.e., 1-Specificity) for all possible thresh-
olds. The area under the ROC curve (AUC) was also calcu-
lated to provide a comprehensive understanding of the pro-
posed prediction method. Generally, the closer the AUC 
value is to 1 indicates a better prediction method. It should 
be emphasized that some ROC curve variants were also fre-
quently invented to assess the catalytic residue predictors 
[65].  
2.4.3. Comparison of Different Prediction Methods 

 Rather than ranking the performance of different predic-
tors quantitatively, we instead focus on discussing the over-
all predictive accuracy. With the booming of newly devel-
oped predictors, de novo catalytic residue prediction has 
been improved to reach a level of reasonably good accuracy. 
Of these predictors, most have focused on detecting catalytic 
residues from protein structures and only a few predict cata-
lytic residues directly from protein sequences. As clearly 
demonstrated by some structural based predictors [3, 33, 35], 
residue properties inferred from protein structure do improve 
the prediction accuracy. It is also interesting to mention that 
some sequence based predictors also exhibit fully compara-
ble performance [41, 44, 65]. Despite the improvements in-
dicated above, the MCC value of some predictors remained 
below 0.4 in the identification of catalytic residues for entire 
enzyme molecules, suggesting that the current algorithms 
were still not suitable for practical use [33, 35]. In other 
words, the catalytic residue prediction result of a real en-
zyme may inevitably contain too many false positives (i.e.,
Precision is too low). The catalytic residue prediction of an 
enzyme structure, which resulted from our previous method 
[35], was used to demonstrate this low Precision. As shown 
in Fig. (4), two of three catalytic residues in beta-ketoacyl-
acyl carrier protein synthase II (PDB entry: 1kas) could be 
successfully identified, but the prediction also resulted in 
eight false positives (i.e., Precision = 20%). Therefore, it is 
still quite time-consuming and daunting for experimental 
scientists to characterize the correct catalytic residues, based 
solely on the results from the currently available predictors. 
 Due to relatively limited data, the accuracy of different 
predictors reported by developers may be more or less over-
estimated, since these methods were predominantly opti-
mized for the corresponding training and testing data. Gen-
erally, a newly developed predictor is needed to be inten-
sively benchmarked with some existing methods, before ac-
ceptance of this predictor for publication in a peer-reviewed 
journal. However, such benchmark experiments may still be 
quite arbitrary, due to the lack of “gold standard” datasets, 
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which can sufficiently cover enzyme sequence and structure 
spaces. With increasing experimental verification of catalytic 
residues, some standard training and testing datasets should 
be available in the near future. Thus, different prediction 
methods can be reliably benchmarked. Meanwhile, some 
well-established strategies for assessing different protein 
structure prediction methods (e.g., Live-Bench [70] and 
EVA [71]) should also be considered for evaluating different 
catalytic residue predictors. 

2.5. Web-Servers for Some Existing Predictors 

 Thus far, few de novo catalytic residue prediction web-
servers have been available to the community and these 
URLs are summarized in Table 1. Some sequence (structure) 
motifs- based catalytic site detection servers (i.e., E1DS [72], 

PAR-3D [22], and Catalytic Site Search [23]) are also listed 
in Table 1. However, the machine learning methods-based 
catalytic residue prediction server is still not available. To 
develop a bioinformatics tool, providing a web-server is vital 
for the community as well as developers. Free-accessible 
web-servers can allow users to experience the power of these 
algorithms and then maximize applications of the algorithms. 
In the meantime, feedbacks from users will also urge devel-
opers to continuously improve their algorithms. Compared 
with other areas of bioinformatics, the number of catalytic 
residue prediction servers is relatively small, which may be 
ascribed to the following reasons. First, some methods heav-
ily rely on other algorithms to calculate different residue 
properties. Once the source (binary) codes of such algo-
rithms are not publicly available, establishment of a web-
server is difficult. Second, the less impressive performance 
of de novo catalytic residue prediction may also hinder de-
velopers from constructing web-servers. Even so, these 
available web-servers play increasingly important roles to 
help experimental scientists accelerate the functional charac-
terization of enzyme molecules. Although prediction scores 
for the predicted catalytic residues are provided, the statisti-
cal significances of the prediction scores are not apparent in 
each prediction server. For this, we may follow the current 
protein fold recognition servers, in most of which the confi-
dent levels for different prediction scores are well defined 
[70, 73]. By learning from the protein fold recognition com-
munity in further, it is also expected that a meta-server could 
be developed for different catalytic residue prediction meth-
ods. Thus, users can take advantage of the results from dif-
ferent methods to make more reliable predictions. 

3. FUTURE PERSPECTIVES 

 In summary, the de novo catalytic residue prediction of 
enzymes is an increasingly important topic in the field of 
protein bioinformatics, and there have been major improve-
ments in the past several years. The current available web-
servers play an important role to help experimental scientists 
to accelerate the functional characterization of enzyme mole-
cules. Considering the overall performance of different pre-
diction methods, however, the current de novo predictors are 
still not effective for practical use.  
 To improve the de novo prediction of catalytic residues, 
the following strategies can be used. First, the combination 
of the current de novo algorithms with some classical cata-
lytic residue detection methods (e.g., active site structure 

Fig. (4). Predicted catalytic residues in beta-ketoacyl-acyl carrier 
protein synthase II (PDB entry: 1kas). The prediction was per-
formed by using our previously described method [35], in which 
the predictive model was trained on a 1:6 ratio of catalytic to non-
catalytic residues. White spheres indicate true positives, black 
spheres indicate false negatives and false positives are shown by 
side chains in white sticks. 

Table 1. A Selection of Catalytic Residue Prediction Web-Servers 

Methods URLs References 

SARIGa http://bioinfo2.weizmann.ac.il/~pietro/SARIG/V3/index.html [27] 

THEMATICSa http://pfweb.chem.neu.edu/ [59, 60] 

FRPREDa http://toolkit.tuebingen.mpg.de/frpred [65] 

PAR-3Db http://sunserver.cdfd.org.in:8080/protease/PAR_3D/index.html [22] 

E1DSb http://e1ds.ee.ncku.edu.tw/ [72] 

Catalytic Site 
Searchb

http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/CSS/makeEbiHtml.cgi?file=form.html [23] 

a De novo catalytic residue prediction methods. b Sequence (structure) motifs searching-based catalytic residue prediction methods. 
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motifs-based searching methods) can result in a more reli-
able catalytic residue prediction. Second, selection of more 
advanced statistical or machine learning methods may also 
be possible to achieve better performances. Third, develop-
ing some enzyme class specific predictors can yield higher 
prediction accuracy [9, 22, 74]. However, a priori knowl-
edge of the enzyme class that a query enzyme belongs to is 
required for such predictors. In addition to the above strate-
gies, exploring new properties (encodings) is still the most 
important direction for development of a better predictor. 
Recently, some complicated physicochemical attributes in-
ferred from protein structures have been used to predict cata-
lytic sites [75, 76]. To detect functional sites within a pro-
tein, developers have been heavily involved in finding new 
sequence or structural properties (e.g., see Refs. [77-80]). 
Careful validation on these properties may result in the dis-
covery of encodings suitable for the prediction of catalytic 
residues, since catalytic residues belong to an important type 
of functional residues. Through the integration of more 
physical chemistry in prediction models, we expect that 
newly identified residue properties will definitely improve 
the overall performance for prediction of catalytic residues 
as well as strengthen our basic understanding of the molecu-
lar mechanisms of enzymatic reaction. 
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